|--|

PRESIDENCY UNIVERSITY **BENGALURU**

School Of Computer Science and Engineering & Information Science

Summer term End-Term Examinations, August 2024

Odd Semester: 2023 - 24

Date: 5/08/2024 Course Code: CSA2001 **Time**: 1:00 pm - 4:00 pm

Course Name: Data Structures and Algorithms Max Marks: 100

Department: CSE & IS Weightage: 50%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than the roll number.

Q.Ne	Questions	Ma rks	C O	R B T
	a. What is data structure? Explain various types of data structures in detail.	4	C O 1	L1
1	b. What is bubble sort? Explain the advantages and disadvantages of bubble sort.	6	C O 1	L2
	c. What is selection sort. Explain algorithm of selection sort with an example array.	10	C O 1	L3
	OR			
	a. List out the areas in which data structures are applied extensively.	4	C O 1	L1
2	b. Write a c program to extract a substring from the given string.	6	C O 1	L2
	c. What do you mean by the complexity of an algorithm? Explain the meaning of worst-case analysis and best-case analysis with an example.	10	C O 1	L3
3	a. Write and explain POP operation algorithm of a stack.		4 (

b. Consider size of stack as 5.Apply following operation on stack and show the status of stack and top pointer after each operation . i) push a , b, c ii) pop iii) push e,f iv) pop v) push g h vi)push m vii)pop	5 C O 2	L 2
c. Convert the following infix expression to postfix using stack (A+B*C)/(D-E)+F	C O O 2	L 3
OR		
a. Write the algorithm for converting from infix to post-fix.	C O2	L 1
b. Explain stack data structure and write an algorithm to push and pop an element to	С	_

		The the tagorithm for converting from mint to post this	4	O2	1
	b.	Explain stack data structure and write an algorithm to push and pop an element to		C O2	L
4		and from the stack.	6		2
	c.	What are queues? Write down an algorithm for inserting and deleting elements from		С	
			1	O2	L
		a queue implemented using arrays.	0		3

	a.	Differentiate between List and array in four points.	4	CO 3	L 1	
ı	b.	Define linked list. Explain different types of linked list. Mention the advantage of linked list?	6	CO 3	L 2	
5	c.	What is a linked list? Give the data structure and write algorithms to				
		(i) Delete an element. (ii) Count the number of elements.	1 0	CO 3	L 3	

OR

	a.	Write down the steps to modify a node in linked lists.	4	CO 3	L 1
6	b.	Write an algorithm to insert a node at the beginning of the list.	6	CO 3	L 2
	c.	Explain the insertion operation in linked list. How nodes are inserted after a specified	1	CO	L
		node.	0	3	3

		a.	Define: binary tree, complete binary tree, strict binary tree.	4	C O 4	L 1
,	7	b.	Construct binary search tree for following data: 6, 8, 33, 3, 40, 2, 9, 10, 22, 15, and 17. Consider 10 as root.	6	C O 4	L 2
		c.	Show the result of inserting 3,1,4,6,9,2,5,7 into an initially empty binary search tree. Also write down the result of 3 traversals on this binary search tree.	1 0	C O 4	L 3

OR

o	a.	What is Binary search tree? Write the application areas that use a binary search tree.	4	CO4	L1
0	b.	Write an algorithm for the following 1) In order tree traversal	6	CO4	L2

2) Pre order tree traversal3) Post order tree traversal			
C. Given the following inorder and preorder traversal reconstruct a binary tree			
Inorder – D,G,B,E,A,F,I,C	10	CO4	L3
Preorder – A,B,D,E,H,C,F,I			
	3) Post order tree traversal C. Given the following inorder and preorder traversal reconstruct a binary tree Inorder – D,G,B,E,A,F,I,C	3) Post order tree traversal C. Given the following inorder and preorder traversal reconstruct a binary tree Inorder – D,G,B,E,A,F,I,C 10	3) Post order tree traversal C. Given the following inorder and preorder traversal reconstruct a binary tree Inorder – D,G,B,E,A,F,I,C 10 CO4

		a.	Write a C program to find the factorial of a given number.	4	C O 1	L 1
ç	9	b.	Explain the classification of data structure and operations on data structures.	6	C O 1	L 2
	-	c.	Why do we use asympatotic notation in the study of algorithm? Describe commonly used asymptotic notation and give their significance.	1 0	C O 1	L 3

OR

1 0	a.	List two sort methods. Give example of each.	4	C O2	L 1
1	b.	Explain stack data structure and write algorithm to push and pop an element to and from the stack.	6	C O2	L 2
0	c.	What are queues? Write down algorithm for inserting and deleting elements from a queue implemented using arrays.	1 0	C O2	L 3