

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

School Of Computer Science and Engineering & Information Science

Summer-Term Examinations, Aug 2024

Odd Semester:2023 - 24Date:07.08.2024Course Code:CSE 2007Time:01.00-04.00 PMCourse Name:Design and analysis of algorithmsMax Marks:100Department:SOCSEWeightage:50%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Do not write any matter on the question paper other than roll number.

Q.No		Questions	Marks	CO	RBT
1	a.	Describe Notion of Algorithm	4	CO1	L1
	b.	List down the steps involved in mathematical analysis of Non-Recursive Algorithms	6	CO1	L2
_	с.	Identify the time complexity (upper bound) for the below iterative			
		functions			
		A()			
		{			
		Int i,j,k,n;			
		for(i=1;i<=n;i++)			
		{			
		for(j=1;j<=i;j++)			
		{			
		for(k=1;k<=100;k++)	10	CO1	L3
		{			
		Printf("Ravi");			
		}			
		}			
		}			
		,			

2	a.	List down the steps involved in analyzing an algorithm	4	CO1	L1
	b.	Explain with an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to	6	CO1	L2

	solve a problem instance.				
c.	Find the time complexity (upper bour T(n)=n + T(n-1); T(n)=1	nd) for the below recursive functions ;n>1 ;n=1	10	CO1	L3

	a. In brief explain brute force strategy of programming	4	CO2	L1
3	b. Briefly explain Traveling Salesman Problem (TSP) using brute force strategy with example	6	CO2	L2
	c. List down the steps for linear search and mention its best case, worst case and average case	10	CO2	L3

OR

	a. Write an algorithm to find uniqueness of elements in an array	4	CO2	L1
4	b. Demonstrate pattern matching algorithm with suitable example	6	CO2	L2
_	c. List down the steps involved for bubble sort and apply the same to sort 9, 8,7, 6, 5, 4, 3, 2, 1	10	CO2	L3

	a. In brief e	xplain Divide & conquer strategy of programming	4	CO3	L1
5	b. Explain tl	ne general divide & conquer recurrence relation	6	CO3	L2
	c. State ma T(n) = 2T	ster theorem and apply the same for recurrence relation (n/2) + 1	10	CO3	L3

OR

	a. List down the advantages and limitations of divide & conquer technique	4	CO3	L1
6	b. Write and explain binary search algorithm with an example	6	CO3	L2
	c. Write and explain quick sort algorithm with an example.	10	CO3	L3

7 b. Briefly explain steps in involved in Floyd algorithm with steps in involved in it. 6 CO4 L2 c. Briefly explain Bellman ford algorithm and Why Relaxing Edges N-1 times, gives us Single Source Shortest Path? 10 CO4 L3		a.	Define Dynamic programming and briefly list down its properties	4	CO4	L1
	7	b.	Briefly explain steps in involved in Floyd algorithm with steps in involved in it.	6	CO4	L2
		C.		10	CO4	L3

OR

	 Bring out at least three differences between divide & conquer and dynamic programming 	4	CO4	L1
	b. List down the applications of the greedy strategy	6	CO4	L2
8	d. Apply all pair shortest path algorithm (Floyd) for the below graph	10	CO4	L3

	a.	How does backtracking algorithm work?	4	CO1	L1
	b.	Find the minimum spanning tree (MST) by applying prims algorithm with B as source vertex.			
9			6	CO1	L2
	c.	Draw state space tree for N queens problem with 4 *4 chess board having 4 queens Q1,Q2,Q3,Q4.	10	CO1	L3
		OR			

10	a. List down the steps involved in back tracking	4	CO2	L1
	b. Define minimum spanning tree (MST) and explanation algorithm.	in working principle of Prims 6	CO2	L2
	c. How backtracking approach is used to solve sur	n of subset problem 10	CO2	L3