	 	 ······································	
Roll No			

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE-UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 22 July 2019

Course Code: MATH A 104

Time: 3 Hours

Course Name: Differential Equations and Fourier Series

Max Marks: 100

Program & Sem: B.Tech & II Sem (2016 Batch)

Weightage: 50%

Instruction

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the questions. Each question carries six marks

(5Qx6M=30M)

1. Obtain the Fourier series of $f(x) = 2x - x^2$ in $0 \le x \le 2$

2. Obtain the Fourier series of $f(x) = \begin{pmatrix} -k & in - \pi < x < 0 \\ k & in 0 < x < \pi \end{pmatrix}$

3. Form the PDE by eliminating the arbitrary constant $z = a \log(x^2 + y^2) + b$

4. Form the PDE by eliminating the arbitrary constant $z = e^{ax+by} f(ax-by)$

5. Solve
$$\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$$

Part B

Answer all the questions. Each question carries ten marks

(3Qx10M=30M)

6. Obtain the Fourier series of Obtain the Fourier series of $f(x) = \begin{pmatrix} -\pi & in - \pi < x < 0 \\ x & in 0 < x < \pi \end{pmatrix}$

Hence, deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$

7. Obtain the Cosine half range series for the function of $f(x) = (x-1)^2$ in $0 \le x \le 1$

8. Obtain the Complex form of Fourier series for the function $f(x) = e^x$ in $0 < x < \pi$

Part C

Answer both the questions. Each question carries twenty marks.

(2Qx20M=40M)

9. Compute the constant term and the first two harmonics in the Fourier series

Х	0	π/3	2π /3	π	4π /3	5π /3	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

10. Solve: $\frac{\partial^3 u}{\partial x \ \partial t} = e^{-t} \cos x$ given that u = 0 when t = 0 and $\frac{\partial u}{\partial t} = 0$ at

x = 0. Also show that $u \to \sin x$ as $t \to \infty$.

(or)

Solve: $\frac{\partial^2 u}{\partial x^2} + u = 0$, where u satisfies the conditions (i) u $(0, y) = e^{\frac{1}{2}}$ (ii) $\frac{\partial u}{\partial x}(0, y) = 1$