

Roll No.							
					1		

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

SET A

TEST - 1

Even Semester: 2018-19

Date: 01 March 2019

Course Code: MAT 104

Time: 1 Hour

Course Name: Engineering Mathematics -IV

Max Marks: 40

Programme & Sem: B. Tech & IV Sem

Weightage: 20%

Instructions:

Read the question properly and answer accordingly. (i)

(ii) Question paper consists of 3 parts.

Scientific and Non-programmable calculators are permitted (iii)

Part A

Answer all the Questions. Each question carries four marks.

(3Qx4M=12)

- 1. A pair of fair dice is tossed. Find the probability of getting
 - a. a total of 8;
 - b. at most a total of 5.
- 2. The probability density function of a continuous random variable X is given by

e probability density function of a continuous random variable X is
$$f(x) = \begin{cases} k(1-x^2), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$
. Find (i) k (ii) P (0.1< x < 0.2).

3. The probability that a married man watches a certain television show is 0.4, and the probability that a married woman watches the show is 0.5. The probability that a man watches the show, given that his wife does, is 0.7. Find the probability that (a) a married couple watches the show; (b) a wife watches the show, given that her husband does.

Part B

Answer all the Questions. Each question carries eight marks.

(2Qx8M=16)

4. In a certain assembly plant, three machines, B1, B2, and B3, make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective? Also if a product was chosen randomly and found to be defective, what is the probability that it was made by machine B3?

5. Fit a straight line of the form y=ax+b for the following data:

X	0	1	3	6	8
Υ	1	3	2	5	4

Part C

Answer the Question. Question carries twelve marks.

(1Qx12M=12)

6. Let X denote the minimum of the two numbers that appear when a pair of dice is thrown once. Then determine the (a) Probability distribution (b) Mean (c) Variance.

Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET B

TEST - 1

Date: 01 March 2019

._0. .

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Even Semester: 2018-19
Course Code: MAT104

Course Name: Engineering Mathematics-IV

Programme & Sem: B. Tech & IV Sem

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the Questions. Each question carries four marks.

(3Qx4M=12)

- 1. A die is loaded in such a way that an even number is twice as likely to occur as an odd number. If E is the event that a number less than 4 occurs on a single toss of the die. Find P(E)?
- 2. If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7 or 8 or more cars on any working day are respectively 0.12, 0.19, 0.28, 0.24, 0.10 and 0.07. What is the probability that he will service at least 5 cars on his next day at work?
- 3. The probability density function f(x) of a continuous random variable is given by $f(x) = ce^{-|x|}$, $-\infty < x < \infty$. Find value of c?

Part E

Answer all the Questions. Each question carries eight marks.

(2Qx8M=16)

- 4. In a certain region of the country it is known from past experience that the probability of selecting an adult over 40 years of age with cancer is 0.05. If the probability of a doctor diagnosing a person with cancer as having the disease is 0.78 and the probability of diagnosing a person without cancer as having the disease is 0.06.
 - a) What is the probability that an adult over 40 yrs of age is diagnosed as having cancer?
 - b) What is the probability that a person diagnosed as having cancer actually has the disease?

5. Fit a straight line y = a + bx for the data

X: 1 2 3 4 5 Y: 6 5 4 3

Part C

Answer the Questions. Question carries twelve marks.

(1Qx12M=12)

6. The Probability density function of a variable X is

X	0	1	2	3	4	5	6	
P(X)	k	3k	5k	7k	9k	11k	13k	

(a) Find k (b) Find P(X < $\overline{4}$); P(X \geq 5) and P(3 < X \leq 6) (c) What will be the minimum value of the k so that P(X \leq 2) > 0.3.

Roll No.							
TOILING.							ı

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Even Semester: 2018-19

Date: 13 April 2019

Course Code: MAT 104

Time: 1 Hour

Course Name: Engineering Mathematics IV

Max Marks: 40

Program & Sem: B.Tech & IV Sem

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the Questions. Each question carries four marks.

(3Qx4M=12)

- 1. Find the binomial distribution which has mean 2 and variance is $\frac{4}{3}$?
- 2. A hospital switch board receives an average (\times or m) 4 emergency calls in an hour. Use Poisson distribution to find the probability that (a) there are at most 2 emergency calls in an hour (b) there are exactly 3 emergency calls in an hour?
- 3. Given X has a normal distribution with μ = 50 and σ =10, find the probability that X assumes a value between 45 and 62.?

Part B

Answer both the Questions. Each question carries eight marks.

(2Qx8M=16)

- 4. The average grade for an exam is 74 and the standard deviation is 7.If 12% of the class is given A grade, and the grade marks are curved to follow a normal distribution, what is the lowest possible A grade mark and the highest B grade mark?
- 5. A sample of 400 items is taken from a population whose standard deviation is 10. The mean of sample is 40. Test whether the sample has taken from a population with mean 38 at 5% level of significance?

PTO

Part C

Answer Any One Question. Question carries twelve marks.

(1Qx12M=12)

6. Find correlation coefficient and hence obtain both the lines of regression for the following data:

X: 10 14 18 22 26 30 Y: 18 22 24 26 30 36

OR

7.

- (a) In a factory producing blades, the probability of any blade being defective is 0.002. If blades are supplied in a packets of 10, determine the number of packets containing (i) no defective (ii) one defective blades in the consignment of 1000 packets?
- (b) A multiple choice quiz has 200 questions each with 4 possible answers of which one is correct answer. By Normal approximation to Binomial, what is the probability that sheer guesswork yields from 25 to 30 correct answers for the 80 of the 200 questions about which the student has no knowledge?

Roll No						
						l

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Even Semester: 2018-19

Date: 20 May 2019

Course Code: MAT 104

Time: 3 Hours

Course Name: Engineering Mathematics-IV

Max Marks: 80

Program & Sem: B.Tech & IV Sem

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

Scientific and Non-programmable calculators are permitted. (iii)

Part A

Answer all the Questions. Each question carries one mark.

(20Qx1M=20M)

1.

- (i) Accepting H₀ when it is wrong is
- a) Type I error b) Type II error c) one tailed alternatives d) two tailed alternatives
- (ii) If O(S) = m, O(A) = n, then Probability of an event A is defined by
- a) P(A) = n/m
- b) P(A) = m/n
- c) P(A) = m/S
- d) P(A) = n/S

- (iii) If A and A¹ are complementary events then

- a) P(A) P(A') = 1 b) P(A) / P(A') = 1 c) P(A) + P(A') = 1 d) P(A) P(A') = 1
- (iv) The probability of getting an even number in tossing a die is
- a) 1/3
- b) 2/3
- c) 3/6
- d) 4/3
- (v) Any population constant is called
- a) Statistic
- b) Parameter
- c) Estimate
- d) Evaluate

- (vi) Any calculation on the sampling data is:
- a) Statistic
- b) Parameter
- c) Estimate
- d) Evaluate
- (vii) The range of the correlation coefficient is:
- a) [-1, 1]
- b) [-2, 2]
- c) (0, 1)
- d)(-1, 0)
- (viii) If equation of the line of regression of y on x is with negative slope then
- a) Correlation coefficient is positive
- b) correlation coefficient is negative
- c) No correlation between x and y
- d) none of these

(IX) THE	exped	led value of	a discrete rand	JUIII VA	Habic .	x 13 91VC	11 D y	
a) P(x	·)	b) $\sum P(x)$	c) $x \sum P(x)$	d) 1				
(x) The	e area t	o the right as	s well as to the	left of	the line	e Z=0 in s	standard no	ormal curve is
a) 0.5		b) 0.1	c) 0.05		d) 0.0	1		
(xi) The	e value	of standard	normal variate	corres	ponding	g to x= 2	0, μ= 12 ar	$\sigma = 4 is$
a) 2		b) 3	c) 4	d) 5				
(xii)	Area	of the standa	rd normal curv	e betw	een Z=	:-0.86 ar	nd Z=0 is	
a) 0.3	051	b) 0.2779	c) 0.975	d) 0.6	308			
(xiii)	The g	roup of indivi	duals under st	udy is	called			
a) Sta	atistic	b) Pa	ırameter	c) sar	nple	c	l) Populatio	on
(xiv)	The o	rder of conve	ergence is fast	er in				
a) Bis	ection	method	b) Regula-Fa	alsi me	thod	c) NR-n	nethod	d) None of these
(xv)	The h	ypothesis wh	ich is complim	entary	to null	hypothe	sis is called	t
a) Alte	ernative	e hypothesis	b) Null hypot	hesis	c) san	npling er	ror d) st	andard deviation
(xvi)	The p	robability of	drawing a king	from a	deck c	of cards i	s	
a) 1/5	2	b) 4/52	c) 2/52	d)4/56	3			
(xvii)	The v	alue of the c	onstant k, for a	contin	uous p	robability	/ distributio	on $f(x) = kx (1-x)$,
Where	e 0 ≤ x	≤ 1 is						
a) 6		b) 3	c) 2	d) 1				
(xviii)	A tabl	e with all pos	sible value of	a rand	om vari	iable and	l its corresp	oonding
Proba	abilities	is called						
a) Pro	bability	/ Mass Funct	ion	b) Pro	bability	y Density	Function	
c) Cui	mulativ	e distribution	Function	d) Pro	obability	y Distribu	ution	
(xix)	If n=1	0 and p=0.8,	then the mean	n of the	binom	nial distrik	oution is	
a) 8		b) 0.2	c) 80	d) 0.8	88			
(xx)	If two	dice are toss	sed simultaned	ously, th	ne prob	ability th	at the total	is equal to 12 is
a) 1/3	6	b) 3/	36	c) 1/6	;	d) 3/6		

Part B

Answer all the Questions. Each question carries eight marks.

(5Qx8M=40M)

- **2.** Three machines A, B and C produce 60%, 30%, and 10% of the total production of the factory respectively. The percentages of the defective output of these machines are respectively 2%, 3%, and 4%. If an item is selected at random,
- a) What is the probability that it is defective?
- b) Find the probability that the defective item was produced by machine C:-
- **3.** Using Newton-Raphson method, find the real root of $x \log_{10} x = 1.2$ correct to four decimal places. Consider the initial approximation as 2.
- **4.** From the table below, Find the value of y at x = 3.5 using suitable interpolation formula.

X	3	4	5	6	7	8	9	
Υ	4.8	8.4	14.5	23.6	36.2	52.8	73.9	

- **5.** Use Simpson's one-third rule to evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.
- **6.** Using Euler's Modified method, Solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x=0.2. Take h=0.2.

Part C

Answer both the Questions. Each question carries ten marks.

(2Qx10M=20M)

7. a) Using Runge-Kutta method of fourth order, obtain the approximate value of y when x=0.2 by taking h=0.1 for $\frac{dy}{dx} = x + y$ with y(0) = 1.

(OR)

- b) In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally distributed with an average life of 2040 hours and Standard deviation of 60 hours. Estimate the number of bulbs likely to burn for $[\Phi(1.83)=0.4664, \Phi(1.5)=0.4332 \& \Phi(2)=0.4772]$
 - (i) More than 2150 hours
- (ii) less than 1950 hours and
- (iii) Between 1920 hours and 2160 hours.
- **8**. a) Fit a second degree parabola to the following data.

Χ	1.0	1.5	2.0	2.5	3.0	3.5	4.0
У	1.1	1.3	1.6	2.0	2.7	3.4	4.1

(OR)

b) Solve the following equations by Gauss Seidel method. Carry out four iterations

$$10x - 2y - 3z = 205$$
, $-2x + 10y - 2z = 154$, $-2x - y + 10z = 120$.

	ł	1 1	1	1	ŀ					
	1	1 1	1	i				i	l i	
Roll No	Ì		- 1				ļ			
rton rto.	ì		1	1						
	į.	1 1	1	1				i		
	1			1	ļ		1	1		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 27 July 2019

Course Code: MAT 104

Time: 2 Hours

Course Name: Engineering Mathematics-IV

Max Marks: 80

Program &Sem: B.Tech & IV Sem (2016 Batch)

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the Questions. Each question carries eight marks.

(3Qx8M=24)

- 1. Using Newton-Raphson's method, find the approximate root of $3x = \cos x + 1$ near $x_0 = 0.5$.
- 2. Using Picard's method, find y(0.2) for the IVP y' = x + y, y(0) = 1.
- 3. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using trapezoidal rule, by taking 6 equal intervals.

Part B

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30)

4. Apply Newton's divided difference formula to find y'(6) for the following data

X	0	1	4	5
у	4	3	24	39

- 5. Using Taylor series method, find y(1.02) given y' = xy 1, y(1) = 1 with h = 0.02.
- 6. Using Euler's modified method, find y(0.1) given $y' = x^2 + y^2$, y(0) = 1.

Part C

Answer both Questions. Each question carries thirteen marks.

(2Qx13M=26)

- 7. Evaluate $\int_4^{5.2} \log_e x \, dx$ using Simpson's $1/3^{\text{rd}}$ rule and Simpson's $3/8^{\text{th}}$ rule, by taking 6 equal intervals.
- 8. Apply Runge Kutta method to find the value of y at x = 0.2, given $\frac{dy}{dx} = \frac{y x}{y + x}$, y(0) = 1 with h = 0.2.

