

Roll No

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE-UP END TERM EXAMINATION

Semester: Summer Term 2019

Course Code: MATH A 201
Course Name: Numerical Methods

Program: B.Tech & III Sem(2015 Batch)

Date: 26 July 2019

Time: 3 Hours

Max Marks: 100

Weightage: 50%

Instructions:

(i) Question paper consists of 3 parts.

(ii) Scientific and Non-programmable calculators are permitted.

Part A

Answer **all** the Questions. **Each** question carries **ten** marks.

 $(3Q \times 10M = 30)$

- 1. Using Newton-Raphson method find a real root in the interval [1, 2] of the algebraic equation $2x^3 3x 6 = 0$ correct up to three decimal places.
- 2. Using divided difference method of interpolation estimate the value of y at x = 5 for the following data

Х	0	2	3	4	7	9
У	4	26	58	112	466	922

3. Obtain the value of y(0.2) and y(0.4) using Euler's method with h=0.2 given $\frac{dy}{dx}=y+e^x, \ y(0)=0.$

Part B

Answer **all** the Questions. **Each** question carries **ten** marks.

 $(4Q \times 10M = 40)$

- 4. Use the Gauss-Seidel iterative method to solve the system of simultaneous linear equations 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110.
- 5. Employ the Rayleigh's power method to determine the dominant eigenvalue and the

corresponding eigenvector of the following matrix $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$

- Solve $\frac{dy}{dx} = x + y$, y(0) = 1, using the Picard's method up to the third approximation. Hence find the values of y(0.1) and y(0.2).
- 7. Using Taylor's series method determine y(0.1) and y(0.2), given

$$\frac{dy}{dx} = 3e^x + 2y, \ y(0) = 0.$$

Part C

Answer both Questions. Each question carries fifteen marks.

 $(2Q \times 15M = 30)$

- 8. Evaluate $\int_{0}^{6} \frac{1}{1+x^2} \, dx$, with h=1, using (i) trapezoidal rule (ii) Simpson's 1/3 rule and (iii) Simpson's 3/8 rule.
- 9. Compute the value of y(0.1) using Runge-Kutta method of fourth order with h = 0.1 given that $\frac{dy}{dx} = x + y^2$, y(0) = 1.