

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 23 July 2019

Course Code: ME A 201

Time: 3 Hours

Course Name: Applied Thermodynamics

Max Marks: 100

Program & Sem:B.Tech & III Sem (2015 Batch)

Weightage: 50%

Instructions:

i. Read the question properly and answer accordingly.

ii. Question paper consists of 3 parts

iii. Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries five marks.

 $(6Q\times5M=30M)$

- 1. Draw the PV curve of dual cycle and write the various processes. Also write the expression for thermal efficiency of the same.
- 2. Define 1 TR. Write the value of 1 TR in KJ/min and Kcal/min.
- 3. Draw the TS curve of a Reversed Carnot Cycle and write the various processes.
- 4. Show that $(COP)_{HP} = (COP)_R + 1$.
- 5. Write any five desirable properties of a refrigerant.
- 6. Draw the psychrometric chart and show the DBT, Specific humidity, RH and Enthalpy lines in it.

Part B

Answer all the Questions. Each question carries ten marks.

(4Qx10M = 40M)

- 7. Explain VARS with a neat diagram.
- 8. Define Dry Bulb temperature, Wet Bulb temperature, specific humidity, relative humidity and dew point temperature.
- 9. Show the effect on thermal efficiency and quality of steam with the help of T-S curve for the following variation in parameters-
 - (a) Increase in Boiler pressure.
 - (b) Decrease in Condenser pressure.
 - (c) Superheating the steam
 - (d) Reheating the steam

10. Draw the T-S curve and block diagram for reheating in a rankine cycle. Also write the expression for Q_s and W_{net} .

Part C

Answer all the Questions. Each question carries fifteen marks.

(2Qx15M = 30M)

- 11. Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600°C and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 %. Draw the T-S curve and determine:-
 - (a) Quality of steam leaving the turbine
 - (b) Enthalpy of steam at turbine exit
 - (c) Reheater pressure
 - (d) Pump Work
 - (e) Heat Supplied
 - (f) Heat Rejected
 - (g) Thermal Efficiency
- 12. Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that communicates thermally with a cold region at 0°C and a warm region at 26°C. Saturated vapor enters the compressor at 0°C and saturated liquid leaves the condenser at 26°C. The mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (c) the coefficient of performance. Now, let the isentropic efficiency of the compressor be 80%, condenser temperature be 30°C and evaporator temperature be -10°C. Then, determine (d) the compressor power, in kW, (e) the refrigeration capacity, in tons, (f) the coefficient of performance.

Use following data for saturated refrigerant R134a:

At $T=0^{\circ}$ C, $h_g = 247.23$ KJ/Kg, $s_g = 0.9190$ KJ/KgK

At T= -10° C, h_g=241.35KJ/Kg, s_g = 0.9253KJ/KgK

At T= 26° C, $h_f = 85.75$ KJ/kg and at T= 30° C, $h_f = 91.49$ KJ/kg

Use following data for superheated refrigerant R134a :-

At T= 26° C, P_{sat} = 6.85 bar and at T= 30° c, P_{sat} = 9 bar

At $P_{sat} = 6.85$ bar, s = 0.9190 KJ/KgK, h = 264.7 KJ/Kg

At P_{sat} = 9 bar, s =0.9253 KJ/KgK, h= 272.39 KJ/Kg

Use following data for steam:

At P= 10 KPa, $s_f = 0.6492$ KJ/KgK, $s_{fg} = 7.4996$ KJ/KgK, $h_f = 191.81$, $h_{fg} = 2392.1$, $v_f = 0.00101$ m3/kg

At T= 600° C and s = 7.3688 KJ/Kgk, P_{sat} = 4 MPa, h= 3674.9 KJ/Kg

At P= 15 MPa and T = 600° C, h= 3583.1 KJ/Kg, s= 6.6796 KJ/KgK

At P= 15 MPa and s = 6.6796 KJ/KgK, h = 3155 KJ/Kg