

Roll No								
	1	1	£		Ι.			

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 22 July 2019

Course Code: CSE 202

Time: 2 Hours

Course Name: Digital Design

Max Marks: 80

Weightage: 40%

Program & Sem: B.Tech & III Sem (2016 & 2017 Batch)

Instructions:

(i) Read the question properly and answer accordingly and to the point.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30M)

- 1. State and Prove De-Morgan's Theorem. Realize fundamental gates using NOR gates.
- 2. Minimize the following Boolean function using K map method

$$F(A,B,C,D) = \Sigma m(1,3,4,5,9,11,14,15) + \Sigma d(2,6,7,8)$$

Realize the resultant expression using NAND gates.

3. Define Multiplexer. With a neat circuit diagram, explain the working principle of 16:1 Multiplexer.

Part B

Answer all the Questions. Each question carries fifteen marks.

(2Qx15M=30M)

- 4. Apply Quine Mc-Clusky method to find the essential prime implicants for the Boolean expression $F(A,B,C,D) = \Sigma m(0,1,2,3,10,11,12,13,14,15)$
- 5. Explain the different representations of SR, D and JK Flip-flops.

Part C

Answer both the Questions. Each question carries ten marks.

(2Qx10M=20M)

- 6. Design a mod-5 counter using JK-Flip-flops.
- 7. With a neat block diagram, explain the working of a Master-Slave JK Flip-flops.

