

Roll No.						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 1

Even Semester: 2018-19

Date: 05 March 2019

Course Code: CSE 205

Time: 1 Hour

Course Name: Computer Organization and Architecture

Max Marks: 40

Programme & Sem: B.Tech (CSE) & IV Sem

Weightage: 20%

Instructions:

(i) Read the questions and answer accordingly.

(ii) Question Paper consists of 3 parts.

Part A

Answer all the Questions. Each question carries five marks.

(2Qx5M=10)

- 1. Explain the types of Byte Addressability with suitable diagram:-
- 2. Write and explain each parameter of the Basic Performance Equation.

Part B

Answer all the Questions. Each question carries ten marks.

(2Qx10M=20)

- 3. Explain the following types of addressing modes with example.
 - i) Absolute mode
 - ii) Immediate mode
 - iii) Relative Addressing
 - iv) Base with index mode
 - v) Base with index and offset
- 4. With a neat diagram explain the connection between the processor and memory.

Part C

Answer the Question. Question carries ten marks.

(1Qx10M=10)

- 5. a) Using 4 bit signed numbers **add** the following and check for overflow?
 - i) +2 and -3
 - ii) -4 and -6
 - iii) -6 and +4
 - b) Using 4 bit signed numbers **subtract** the following and check for overflow?
 - i) +7 and +4
 - ii) -7 and +1

Roll No.						
----------	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Even Semester: 2018-19

Date: 15 April 2019

Course Code: CSE 205

Time: 1 Hour

0 Name of Community of Community

Program & Sem: B.Tech & IV Sem

Max Marks: 40

Course Name: Computer Organization and Architecture

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer both the Questions. Each Question carries ten marks.

(2Qx10M=20)

- 1. With a neat diagram explain the Single Bus Processor Architecture. List the control sequence required for fetching the instruction Add (R3), R1.
- 2. With neat block diagram, explain the Internal Organization of 16 x 8 memory chip. Find the minimum number of external pins for this memory chip.

Part B

Answer the Question. Question carries ten marks.

(1Qx10M=10)

3. What is Interrupt Latency? Explain the three possibilities of Enabling and Disabling Interrupts.

Part C

Answer the Question. The Question carries ten marks.

(1Qx10M=10)

4. What is the drawback of ripple carry adder? Design a 4 bit Carry Look-Ahead Adder by clearly stating the Boolean equations of the look ahead carry generation. Specify the gate delay required for generating the carry-out signal.

Page 1 of 1

Roll No						

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Even Semester: 2018-19

Date: 21 May 2019

Course Code: CSE 205

Time: 3 Hours

Course Name: Computer Organization and Architecture

Max Marks: 80

Program & Sem: B.Tech & IV Sem

Weightage: 40%

`structions:

- Read the question properly and answer accordingly.
- Question paper consists of 3 parts. (ii)
- Scientific and Non-programmable calculators are permitted. (iii)

Part A

Answer all the Questions. Each question carries one mark.

(20Qx1M=20M)

1. Answer the following MCQs / Fill in the blanks:

- i. A very large and expensive computer capable of supporting hundreds or even thousands of users simultaneously is called
 - a. Microcomputer

b. Mainframe

c. Server

- d. Minicomputer
- The number of bits in each word is called as

 - a. Bit length b. Word length
- c. Bit word
- d. word bit
- iii. The three types of buses connected to CPU are:
 - a. Data, address, control
- b. Data, system, address
- c. Address, control, memory
- d. Fetch-code, control, execution.
- Which instruction type has the format Operation Source/Destination
 - a. Zero Address Instruction
- b. One Address Instruction
- c. Two Address Instruction
- d. Three Address Instruction
- The addressing mode in which the address of the operand is given explicitly in the instruction is called as
 - a. Immediate mode

b. Register mode

c. Absolute mode

- d. Index mode
- During the execution of a program which gets initialized first?
 - a. MDR
- b. IR
- c. PC
- d. MAR

Page 1 of 3

vii.	The F	PC gets incremented		
	a.	After the Instruction decoding	b.	After the IR instruction gets executed
	C.	After the fetch cycle	d.	None of the above
viii.	The t	ype of memory assignment used in	ı Int	tel processors is
	a.	Little Endian	b.	Big Endian
	C.	Medium Endian	d.	None of the above
ix.	In sub	oroutines, the order in which the re	turr	addresses are generated and used is
	a.	LIFO	b.	FIFO
	C.	Random	d.	Highest Priority
Χ.	The r	egisters, ALU and the interconnec	ion	between them are collectively called as
	a.	Process Route	b.	Information trail
	C.	•		Data Path
xi.	Coord	dination and control of the activities		nong the functional units is done by the
		Key board		ALU
		Control unit		Memory
xii.		ess of next instruction to be fetche		
		PC		MAR
	C.	IR	d.	MDR
xiii.	The e	effectiveness of the cache memory	is k	pased on the property of
	a.	Locality of reference	b.	Memory Localization
	C.	Memory size	d.	None of the mentioned
xiv.	The i	nstructions like MOV or ADD is ca	lled	as
	a.	Operators	b.	Commands
	C.	Op-code	d.	None of the above
XV.	The f	astest data access is provided usi	ng _	
	a.	Caches	b.	DRAMs
	C.	SRAMs	d.	Registers
xvi.	The r	number of external pins required fo	r 32	2 x 16 memory configuration is
cvii.	The	IEEE 754 Floating point single	pr	recision representation uses bits for
	expo	onent field.		
viii.	The	ALU makes use of t	o st	ore the intermediate results.
xix.		Bus structure is usually	y us	sed to connect I/O devices.
XX.	The	addressing mode, which uses t	he	PC instead of a general purpose register is
		<u>.</u>		

Part B

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30M)

- 2. Explain Booth algorithm. Apply Booth algorithm to multiply the signed numbers +13 and -6
- 3. a. Discuss five stage instruction pipeline with proper illustration.
 - b. Multiply +18 and -7 using bit-pair recoding.
- 4. With neat relevant diagrams, explain Flynn's classification.

Part C

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30M)

- 5. Explain IEEE standards for floating point numbers. Represent 1259.125 in single precision format.
- 6. What is Pipeline Hazard? With a neat diagram and an example, explain structural and data hazard.
- 7. Write the steps involved in performing restoring division algorithm. Given A = 10101 and B= 00100 perform A/B using restoring division algorithm.

Roll No.	
----------	--

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

SUMMER TERM/ MAKE UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 22 July 2019

Course Code: CSE 205

Time: 2 Hours

Course Name: Computer Organization and Architecture

Max Marks: 80

Program & Sem: B.Tech, V & IV Sem (2015 & 2016 batch)

Weightage: 40%

Instructions:

(i) Non- Programmable calculators are allowed

Part A

Answer all the Questions. **Each** question carries **five** marks.

(4Qx5M=20)

- 1) Explain the IEEE single-precision format for Floating point number representation using a diagram.
- 2) Use the IEEE single- precision floating-point format for representing the value 1259,125
- 3) Write the Control Sequence for the execution of the instruction ADD R1, R2, R3 using the single bus organization.
- 4) Explain the connection and Control signals for the Memory Data Register (MDR) using a diagram.

Part B

Answer all the Questions. Each question carries Twelve marks.

(5Qx12M=60)

- 5) i) Calculate the product of -13 and +6 Using Booth's Algorithm
- ii) Calculate the product of -13 and + 6 using Bit-pair recoding.

(6)

(6)

- 6) i) Describe the disadvantage of an n- bit ripple carry adder.
 - ii) Explain how it is overcome in the case of a Carry look-ahead adder with a diagram
 - iii) State the equations for the various carry signals.

(1+7+4)

- 7) i) Give the Control sequence for the ADD R4, R5, R6 instruction
 - ii) Explain how it is executed using a 3- bus organization
 - iii) Give the diagram for 3-bus organization

(5+3+4)

- 8) Write the Restoring Division algorithm and use it to divide 8 by 3 using it. (5+7)
- 9) Write the Non-Restoring Division Algorithm and use it to divide 8 by 3. (5+7)