Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

Odd Semester: Ph.D. Course Work	Date : 27 /09/2024
Course Code: CSE860	Time : 10:00am – 11:30am
Course Name: Advanced Computer Networks	Max Marks: 50
Department: SOCSE	Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answ	er ALL the Questions. Each question carries 5 marks. 4Qx5M=20	OM
1	Compare TCP/IP and OSI model	5 Marks
2	What is the need for multiple access protocols? Explain controlled access protocols in detail.	5 Marks
3	Explain the process of congestion control using fair queuing	5 Marks
4	What are the address types supported by IPv6? Explain the IPv6 address format and identify the components in the given address 2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b	5 Marks

Part B

Answ	Answer ALL Questions. Each question carries 15 marks. 2QX15M=	
5	Write an algorithm and explain the working of CRC. Consider a 7-bit message consisting of the bits 1010000 and the polynomial $x^3 + 1$. What is the transmitted message? Show the process of error detection at the receiver end.	15 Marks
6	Explain link state routing algorithm. In the given network, find the suitable path for transmission using link state routing protocol.	15 Marks