Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

Odd Semester: Ph.D. Course Work	Date: 27/09/2024
Course Code: MAT818	Time : 10:00am – 11:30am
Course Name: Coloring and Matrices in graphs	Max Marks: 50
Department: Mathematics	Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Ansv	Answer ALL the Questions. Each question carries 5 marks.		
1	Prove that, a graph is bipartite if and only if all its cycles are even.	5 Marks	
2	Prove that, for any graph G of order 6 or \overline{G} Contains a triangle.	5 Marks	
3	Show that, For any graph G, $k(G) \leq K^{'}(G) \leq \delta(G)$.	5 Marks	
4	Prove that, if G is n-connected, $n \ge 2$ then its line graph $L(G)$ is also n-connected.	5 Marks	

Part B

Answ	2QX15M=30M	
5	Show that the following statements are equivalent,	15 Marks
	1. G is a tree	
	2. Every two nodes of G are joined by a unique path.	
	3. G is connected and p=q+1	
	4. G is acyclic and p=q+1	
	5. G is acyclic and if any two nonadjacent nodes of G are joined b	y an
	edge, then G+e has exactly one cycle.	

6	Prove that, the minimum number of nodes separating two nonadjacent nodes s and t	15 Marks
	equals the maximum number of disjoint $s-t$ path.	