| Roll No. |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|--|--|--|



## Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

| <b>Odd Semester</b> : Ph.D. Course Work | <b>Date</b> : 30 /09/2024       |
|-----------------------------------------|---------------------------------|
| Course Code: CSE862                     | <b>Time</b> : 10:00am – 11:30am |
| Course Name: Advanced Wireless Sensor   | Max Marks: 50                   |
| Networks                                |                                 |
| Department: CSE                         | Weightage: 25%                  |

## **Instructions:**

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

## Part A

| Answer ALL the Questions. Each question carries 5 marks. |                                                                                                                 |         |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|
| 1                                                        | Discuss the main characteristics of Wireless Sensor Networks that differentiate them from traditional networks. | 5 Marks |
| 2                                                        | Describe at least two real-world applications of Wireless Sensor Networks.                                      | 5 Marks |
| 3                                                        | What are the challenges of implementing data aggregation in WSNs, and how do they impact energy usage?          | 5 Marks |
| 4                                                        | Compare Zigbee with other low-power communication technologies in terms of energy efficiency.                   | 5 Marks |

## Part B

| Answer ALL Questions. Each question carries 15 marks. 2QX |                                                                                                                                                                                                                                                                                                                                  | K15M=30M |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 5                                                         | Discuss the design and functioning of energy-efficient hierarchical routing protocols in WSNs, focusing on LEACH and TEEN. Compare their mechanisms for reducing energy consumption and analyze their suitability for different WSN applications, including both event-driven and periodic data monitoring networks.             | 15 Marks |  |
| 6                                                         | Describe the various components of a sensor node in detail, including the sensing unit, processing unit, communication unit, and power unit. How do these components work together in a WSN? Discuss the trade-offs involved in designing sensor node hardware, focusing on power consumption, size, and computational capacity. | 15 Marks |  |