| Roll No. |
|----------|
|----------|



## Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

| <b>Odd Semester</b> : Ph.D. Course Work       | <b>Date</b> : 28 /09/2024     |
|-----------------------------------------------|-------------------------------|
| Course Code: EEE802                           | <b>Time</b> : 2:00pm – 3:30pm |
| Course Name: Power System Modeling & Analysis | Max Marks: 50                 |
| Department: EEE                               | Weightage: 25%                |

## **Instructions:**

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

## Part A

| Answ | ver ALL the Questions. Each question carries 5 marks. 4Qx5M=20M                      |         |
|------|--------------------------------------------------------------------------------------|---------|
| 1    | Analyze the significance of the Q- v  interaction in maintaining voltage stability.  | 5 Marks |
|      | How can reactive power compensation techniques be optimized to handle voltage        |         |
|      | fluctuations in urban power systems?                                                 |         |
| 2    | The state administration of Andhra Pradesh has proposed bringing electricity         | 5 Marks |
|      | from the RTPS to the city of Kurnool. As such, KPTCL is looking to build a new       |         |
|      | transmission line from the Raichur Transmission Point Substation (RTPS) to           |         |
|      | Kurnool in Andhra Pradesh (AP). Provide detailed recommendations for the type        |         |
|      | of transmission line that should be chosen to transfer the electricity, describe the |         |
|      | appropriate study that should be performed, and create the data sheet needed to      |         |
|      | execute the study in accordance with IEEE standards                                  |         |
| 3    | In what scenarios could a generator control loop fail to maintain system             | 5 Marks |
|      | parameters, and how could this be mitigated through control loop design?             |         |
| 4    | In a single-area system, Automatic Load-Frequency control (ALFC) ensures that        | 5 Marks |
|      | the system frequency remains stable by adjusting the power output of the             |         |
|      | generators in response to load changes. Explain the principle and key components     |         |
|      | of ALFC                                                                              |         |

## Part B

| Answer ALL Questions. Each question carries 15 marks. 2QX |                                                                                                                                                                      |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5                                                         | Obtain the power flow solution by selecting suitable method for the given power                                                                                      |  |
|                                                           | system is shown in the below Figure 1 and justify the same what are the reasons                                                                                      |  |
|                                                           | to select that particular method.                                                                                                                                    |  |
|                                                           | $0.02 + j0.04$ $0.01 + j0.03$ $V_1 = 1.05 \angle 0^{\circ}$ $0.01 + j0.03$ $V_2 = 1.04$ $0.0125 + j0.025$ $V_3 = 1.04$ Figure 1. Single line diagram of 3 Bus system |  |

| 6 | A power system has a total load of 500 MW and operates at a nominal frequency    | 15 Marks |
|---|----------------------------------------------------------------------------------|----------|
|   | of 50 Hz. Due to an unexpected increase in load, the total load rises to 525 MW. |          |
|   | The system has a frequency droop characteristic of 5% (i.e., a 5% change in      |          |
|   | frequency corresponds to a 100% change in load). Calculate the new system        |          |
|   | frequency after the load increase                                                |          |