

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP END TERM EXAMINATION

Summer Term: Summer Term 2019

Date: 24 July 2019

Course Code: MEC 209

Time: 2 Hour

Course Name: Heat and Mass Transfer

Max Marks: 80

Program & Sem: B.Tech (Mech) & V Sem (2015 & 2016 Batch)

Weightage: 40%

Instructions:

(i) Question paper consists of 3 parts

(ii) Scientific and non-programmable calculators are permitted.

(iii) **HMT data handbook** will be provided for the test.

Part A

Answer any four Questions. Each question carries five marks.

(4Qx5M=20)

- 1. What is fouling? Describe scale heat transfer coefficient and fouling factor.
- 2. What is Wien's displacement law? Describe its significance in brief.
- 3. What is shape factor? Find F_{12} in the figure shown below.

A tube with cross-section of

- 4. Describe absorptivity, reflectivity and transmissivity of a surface in brief.
- 5. What is viscosity and kinematic viscosity? Give their units. Describe Newton's law of viscosity.

Part B

Answer **any three** questions. **Each** question carries **ten** marks.

(3Qx10M=30)

6. Describe in detail the various types of heat exchangers on the basis of their classification with suitable figures.

- 7. Derive the equation for the surface and space resistance for thermal radiation between grey surfaces. Also express the rate heat transfer between 2 parallel planes in terms of these resistances.
- 8. In a certain double pipe heat exchanger hot water flows at the rate of 5000kg/hr and gets cooled from 95°C to 65°C. At the same time 50000 kg/hr of cooling water at 30°C enters the heat exchanger. The flow conditions are such that the overall heat transfer coefficient remains constant at 2270 W/m 2 K. Determine the heat transfer area required and the effectiveness, assuming 2 streams are in parallel flow. Assume for the both streams $C_D = 4.2 \text{ kJ/kg.K}$
- 9. Determine the rate of heat loss by radiation from a steel tube of outside diameter 70mm and 3m long at a temperature of 227°C if the tube is located within a square brick conduit of 0.3m side and at 27C. Take emissivity, ϵ (steel) = 0.70 and ϵ (brick) = 0.93.

Part C

Answer any two questions. Each question carries fifteen marks.

(2Qx15M=30)

10. A **parallel flow** double pipe heat exchanger is using superheated steam is used to heat water. The steam enters the heat exchanger at 170°C and leaves at 130°C. The inlet and exit temperatures of water are 50°C and 80°C. The inner and outer diameter of the inner pipe of the heat exchanger are 1.2m (d_i) and 1.6m (d_o) respectively. For the pipe length of 10m calculate: (1) Mass flow rate of both steam and water in kg/s. (2) The length of a **counter flow** heat exchanger with the same parameters as in the previous heat exchanger.

Assume specific heat capacity of water and steam as 4.2 kJ/kg°C. Take the heat transfer coefficient at the inner and outer surface of the inner pipe in the heat exchanger as 120 W/m²°C (hi) and 195 W/m²°C (ho) respectively. Neglect the thermal resistance offered by the pipe walls and due to its fouling.

- 11. Calculate the net radiant heat exchange per m^2 area for two large parallel plates at temperature of 427°C and 27°C respectively. ϵ (hot plate) = 0.9 and ϵ (cold plate) = 0.6. If a polished aluminium shield is placed between them, Find the percentage reduction in heat transfer, ϵ (shield) = 0.4.
- 12. What is a boundary Layer? Give the 3 definitions for the boundary layer thickness. Also describe the formation of boundary layer (laminar and Turbulent) over a flat plate with suitable figures.

