Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Department of Research & Development

Mid - Term Examinations - SEPTEMBER 2024

Odd Semester: Ph.D. Course Work	Date: 27 /09/2024
Course Code: MAT817	Time : 2:00pm – 3:30pm
Course Name: Distance in graphs	Max Marks: 50
Department: Mathematics	Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 5 marks. 4Q2		
1	Prove that, a nontrivial graph G is radius minimal if and only if G is a tree.	5 Marks
2	Show that, the maximum trail number among all graphs on p nodes and q edges is, $\begin{cases} q p odd ext{ or } q \leq \binom{n}{2} - \frac{n}{2} + 1 \\ \binom{n}{2} - \frac{n}{2} + 1 otherwise \end{cases}$	5 Marks
3	Prove that, a graph G is a geodetic if and only if for every node v , each node $u \in N_k(v)$ is adjacent to a unique node $N_{k-1}(v)$ for $2 \le k \le e(v)$.	5 Marks
4	Prove that, the center C(G) of any connected graph G lies within a Block of G.	5 Marks

rt	В
	rt

Answ	Answer ALL Questions. Each question carries 15 marks. 2QX15M=		
5	Show that, for each node v of a connected (p,q) –graph G , $p-1 \le s(v) \le \frac{(p-1)(p+2)}{2-q}$ and these bounds can be achieved for each	15 Marks	
	$\begin{array}{c} 2-q\\ q, \ p-1 \le q \le {p \choose 2}. \end{array}$		
6	Prove that, the path centroid of a tree T is unique and it contains the centroid of T .	15 Marks	