Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

Odd Semester: Ph.D. Course Work	Date : 28 /09/2024
Course Code: MAT 833	Time : 2:00pm – 3:30pm
Course Name: Fluid Mechanics	Max Marks: 50
Department: Mathematics	Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 5 marks. 4Q		
1	Define the fluid properties	5 Marks
2	What do you understand by total pressure and centre of pressure?	5 Marks
3	Discuss the types of flow pattern	5 Marks
4	What are the methods of dimensional analysis. Describe the Rayleigh's method for dimensional analysis.	5 Marks

Part B

Answ	ver ALL Questions. Each question carries 15 marks.	15M=30M
5	Write Euler's equation of motion long a streamline and integrate it to obtain Bernoulli's equation. state all assumptions made. List three applications of Bernoulli's equation for real fluid.	15 Marks
6	Define the equation of continuity. Obtain an expression for continuity equation for a three-dimensional flow.	15 Marks