Roll No.		
----------	--	--

Department of Research & Development Mid - Term Examinations - SEPTEMBER 2024

Odd Semester: Ph.D. Course Work	Date: 27 /09/2024
Course Code: MAT834	Time : 2:00pm – 3:30pm
Course Name: Numerical Methods with	Max Marks: 50
Programming Techniques	
Department: Mathematics	Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 5 marks.4Q			x5M=20M		
1	Use Newton-Raphson method to find 2 $sin x + x^2$ correct to 3 decimal pl		f the function	$f(x) = \cos x + $	5 Marks
2	A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in the following table. If the laser is traversing along the x-direction, what is the value of y at $x = 10.00$ using appropriate method $\frac{X}{Y} = \frac{5}{12} = \frac{6}{13} = \frac{9}{14}$				
3	Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by using Simpson	n's 1/3 rd an	d 3/8 th rules.	I	5 Marks
4	Find the y(25) given that $y_{20} = 24$, y_{20} forward difference formula.	$y_{24} = 32, y_{23}$	$_{8} = 35, y_{32} =$	40 using gauss	5 Marks

Part B

Answ	2QX15M=30M	
5	Using finite difference method find y (0.25), y (0.5) and y (0.75) satisfying the difference equation $\frac{d^2y}{dx^2} + y = x$ subject to the boundary condition y (0) =0 ; y (1)=2.	15 Marks

6	Apply 4th order Runge – Kutta Method to solve the following IVP at x = 0.3	15 Marks
	$\frac{dy}{dx} = \frac{y - x}{y + x}; \ y(0) = 1 \& h = 0.1.$	