

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST-1

Even Semester: 2018-19

Date: 5 March 2019

Course Code: PET 215

Time: 01 Hour

Course Name: Natural Gas Engineering

Max Marks: 40

Programme & Sem: B.Tech (PET) & VI Sem

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer all Questions. Each question carries five marks.

(3Qx05M=15)

- **1.** Explain in brief about *types* of Natural Gas Resources (any five?)
- **2.** Explain the sequence of *Flow-after-flow* test with help of neat diagram and notations?
- **3.** Assuming the flow is fully turbulent with tubing diameter is 2.5 in. and relative roughness is 0.0007. Calculate:
 - (a) Friction factor using Katz and Lee equation.
 - (b) Friction factor using Guo equation.

Part B

Answer the Question. Question carries *fifteen* marks.

(1Qx15M=15)

- **4.** For the gas composition given in the following table 1, determine apparent molecular weight, gas specific gravity. Also find the pseudocritical pressure and pesudocritical temperature using:
 - (a) Kay's mixing rule, and
 - (b) Thomas et al.'s equations.

Component	C ₁	C ₂	C ₃	C ₄	C ₅	N_2	CO ₂	H ₂ S
Mole Fraction	0.795	0.110	0.025	0.003	0.004	0.007	0.004	0.043
Molecular Weight	16.04	30.07	44.10	58.12	72.15	28.02	44.01	34.08
Pci	673	709	618	530	485	227	1080	660
T _{ci}	344	550	660	735	847	490	540	1300

Table.1

Part C

Answer the Question. Question carries ten marks.

(1Qx10M=10)

- **5.** A 0.65 specific gravity gas flows from a 2-in pipe through a 1.5-in nozzle-type choke. The upstream pressure and temperature are 300 psia and 40°F, respectively. The downstream pressure is 80 psia. The gas specific heat ratio is 1.3, choke coefficient is 1.1 and choke area is 0.98 in². Calculate:
 - (a) What is the expected daily flow rate?
 - (b) Does heating need to be applied to assure that the frost does not clog the nozzle?

Roll No.							
	l					1	

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

TEST - 2

Even Semester: 2018-19

Course Code: PET 215

Course Name: Natural Gas Engineering

Program & Sem: B.Tech & VI Sem

Date: 15 April 2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

Part A

Answer the Question. The Question carries ten marks.

(1Qx10M=10)

1. Draw a flow diagram of Glycol Dehydration Unit with proper notations.

Part B

Answer both Questions. Each Question carries ten marks.

(2Qx10M=20)

2. Calculate the hourly gas flow rate for the conditions given as follows:

Base Conditions: Gas field in Oklahoma, p_b = 14.65 psia, t_b = 60 °F

Meter pipe: 4-in schedule 40 (4.026-in ID), flange taps, static pressure measured

upstream taps.

Orifice plate: Stainless steel, 1.5 inch measured at 20 °C.

Recorder: 100-in water column differential, 1000 psia static spring.

Readings:

Elevation: 450 ft

Atmospheric pressure: 14.5 psia

Flowing temperature: 95 °F

Gas-Specific gravity: 0.65

Differential pressure: 75-in water column

Static pressure: 750 psia

Data: F_b: 460.000, b: 0.0336, Y: 0.9988, Z: 0.95, g: 32.100 ft/s²

3. For a reciprocating compressor, calculate the theoretical and brake horsepower required to compress 50 MMcfd of a 0.7specific gravity natural gas from 200 psia and 70°F to 3200 psia. If the intercoolers cool the gas to 90°F, what is the gas temperature at first stage and final stage? Assuming the overall efficiency is 0.75

Note: Number of iterations = 01

Data:

At 70°F

Pressure (psia)	100	200	400	600	800
Z	0.98	0.97	0.95	0.93	0.91

Part C

Answer the Question. The Question carries ten marks.

(1Qx10M=10)

- 4. Calculate the minimum required size of a standard oil/gas separator for the following conditions. Consider both vertical and horizontal separators.
 Data:
 - z: 0.85
 - Gas density: 3.5 lbm/ft³
 - Inner diameter of vessel: 2 ft
 - K-values: 0.205 (Vertical separator), 0.45 (Horizontal separator)
 - Liquid settling volume, bbl: 0.65 (Vertical separator), 0.61 (Horizontal separator)
 - Gas flow rate: 4.0 MMscfd
 - Gas-specific gravity: 0.7
 - Condensate-gas ratio (CGR): 15 bbl/MMscf
 - Condensate gravity: 65° API
 Operating pressure: 600 psig
 - Operating temperature: 70 °F

			 		 	Γ		
Poll No							i !	
KOII NO								

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Even Semester: 2018-19

Date: 24 May 2019

Course Code: ECE 213

Time: 3 Hours

Course Name: Digital Signal Processing

Max Marks: 80

Program & Sem: B.Tech ECE (IV Sem) / EEE (VI Sem)

Weightage: 40%

Instructions:

Read the question properly and answer accordingly. Question paper consists of 3 parts. (i)

Scientific and Non-programmable calculators are permitted. (ii)

Exchange of calculators is not allowed. (iii)

Part A

1. Ai	nswer all the Questions.	Each question carrie	es one mark.	(10Qx1M=10M)
i.	The Nyquist theorem fo	r sampling can be ap	plied	
	a) To help in quantizati c) even if signal is not be	on	b) only if the signal	is band-limiteḍ
	c) even if signal is not l	oand-limited	d) To help in encod	ing
ii.	Sampling process conve	erts a CT signal x(t) i	nto a DT signal x[n]	by substituting
	a) t = nT			
iii.	The relation between ar			
	a) Ω = ωT			
iv.				al filter is that the poles
	should be selected in th			•
			b) right half of S-pla	ne
	a) left half of S-planec) either left half or rigl	ht half	d) neither left half ne	or right half
V	Which filter has equiripp	ole characteristics in	pass band and mond	otonic in stop band?
	a) Butterworth filter		b) elliptic filter	,
	a) Butterworth filterc) Chebyshev Type-1 f	ilter	d) Chebyshev Type	-2 filter
vi.				g the poles from S-plane
	to Z-plane is	ı	, , ,	,
	a) one-to-one	b) linear	c) many-to-one	d) many-to-many
vii.	A digital filter is describe			, ,
				on
	c) parabolic equation		d) quadratic equation	on
viii.				of sequences in
	time domain?	, ,	•	•
	a) Linear convolution	b) circular convoluti	on c) periodicity	d) symmetry
ix.	The number of complex			
	a) $N \log_2 N$	b) 2N log N	c) $\frac{N}{2} \log_2 N$	d) $\frac{N^2}{N} \log_2 N$
Χ.			ealizing Canonic Dir	ect Form of IIR filter with
	M+1 zeros and N poles	is		
	a) M+N+1	b) M+N	c) min (M,N)	d) max (M,N)

Part B

Answer all the Questions. Each question carries eight marks.

mid point.

(3Qx8M=24M)

- 3. Determine the 8-point DFT of the sequence $x[n] = \{1, 2, 3, 4, 1, 0, 1, 2\}$ using Radix-2.
- & 4 Decimation-in-Frequency FFT algorithm. Find the Magnitude Spectrum of X(k)?
- **\(\mathbb{G}**\). Using Impulse Invariance Technique, derive the condition for mapping of poles from S-Plane to Z-Plane for the analog filter Transfer Function $H(S) = \sum_{i=1}^{N} \frac{A_i}{S-P_i}$
- Second A. Realize using Direct Form-2 structure for the system function described as, $H(z) = (5 3 z^{-1} + 2 z^{-2}) / (1 0.5 z^{-1} + 0.25 z^{-2})$ (4)
 - B. Draw the Direct Form structure of an FIR filter whose impulse response is $h[n] = \delta[n] + 0.8 \ \delta[n-1] + 0.5 \ \delta[n-2] + 0.125 \ \delta[n-3]$ (4)

Part C

Answer all the Questions. Each question carries twelve marks.

(3Qx12M=36M)

- 7. Design an analog low pass filter with the following specifications:
 - i. Filter has equi-ripple characteristics in passband and monotonic characteristics in stopband.
 - ii. Maximum passband attenuation of 2.5 dB and the stopband attenuation of 30 dB.
 - iii. Passband frequency of 20 rad/sec and a stopband frequency of 50 rad/sec.
- 8. Design and realize a digital low pass filter using bilinear transformation to satisfy the following:
 - i. Monotonic stop band and pass band.
 - ii. -3.01 dB cut-off frequency at 0.5π rad and
 - iii. Magnitude down by at least 15 dB at 0.75π rad.
- 9. The desired frequency response of a low pass filter is given by,

$$Hd\left(e^{j\omega}\right)=Hd(\omega)= egin{cases} e^{-j3\omega}, & for \ |\omega|<rac{3\pi}{4} \ 0, & for \ rac{3\pi}{4}<\ |\omega|<\pi \end{cases}$$

Determine the frequency response of the FIR filter, if Hamming window is used with N=7?

Roll No.	
----------	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP END TERM EXAMINATION

Semester: Summer Term 2019

Date: 23 July 2019

Course Code: PET 215

Time: 2 Hours

Course Name: Natural Gas Engineering

Max Marks: 80

Program & Sem: B. Tech (PET) & VI Sem (2015 Batch)

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A

Answer the Question. The question carries ten marks.

(1Qx10M=10)

1. What are the purposes of Pigging? Write about three pig selection criteria.

Part B

Answer both the Questions. Each question carries twenty marks.

(2Qx20M=40)

- 2. Explain any three problems associated with Natural Gas Production.
- 3. Write short note on the following (any four)
 - (i) Cleaning Pig
 - (ii) Gauging Pig
 - (iii) Displacement Pig
 - (iv) Intelligent Pig
 - (v) Caliper Pig

Part C

Answer the Question. The question carries thirty marks.

(1Qx30M=30)

4. Write any four advantage and disadvantages of Glycol dehydrator. What are the problems associated with long distance transmission of Natural Gas which contain water? Explain Glycol dehydration unit with a suitable flow chat.

