

Roll No.				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 1

Even Semester: 2018-19

Date: 05 March 2019

Course Code: ECE 216

Time: 1 Hour

Course Name: Information Theory and Coding

Max Marks: 40

Programme & Sem: B.Tech, & VIII Sem (Group-I)

Weightage: 20%

Instructions:

(i) Scientific calculators are allowed.

Part A

Answer **all** the Questions. **Each** question carries **six** marks.

(2Qx6M=12)

- 1. Find the average information rate per message if the message m1, m2, m3 and m4 are transmitted with the probabilities p1=1/8,p2=2/8 p3=3/8 p4=2/8.
- 2. Find the output probabilities of a binary symmetric channel whose channel diagram is shown in the below figure 1, for p=0.2.

Answer the Question. Question carries twelve marks.

(1Qx12M=12)

3. Prove that H(X, Y) = H(Y/X) + H(X).

Part C

Answer the Question. Question carries sixteen marks.

(1Qx16M=16)

- 4. The graph of the Markoff source is shown in the below fig.2
 - a. Calculate entropy of the source
 - b. Draw Tree diagram
 - c. Calculate probability of length ONE and probability of symbol sequence "CB".

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Even Semester: 2018-19

Date: 15 April 2019

Course Code: ECE 216

Time: 1 Hour

Course Name: Information Theory and Coding

Max Marks: 40

Program & Sem: B.Tech & VIII Sem (Group-I)

Weightage: 20%

Instructions:

(i) Scientific calculators are allowed.

Part A

Answer both the Questions.

(4M+8M=12M)

- 1. Prove that G.H^T=0 where G-Generator matrix and H is parity check Matrix.
- 2. A Memory less source emits six messages with probabilities {0.4, 0.19, 0.16, 0.15, and 0.15}. Find the Shannon -Fano code and determine its efficiency.

Part B

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

3. A DMS with seven possible symbols x_i , i = 1, 2, ..., 7 and the corresponding probabilities p1 = 0.46, P2 = 0.30, p3 = 0.12, p4 = 0.06, p5 = 0.03, p6 = 0.02, and p7 = 0.01. Construct the Huffman code tree and find the coding efficiency.

Part C

Answer the Question. The Question carries sixteen marks.

(1Qx16M=16M)

4. Write short notes on error detection with re transmission, the parity check matrix for a (6, 3) block code is given below find all valid code vectors and Generator Matrix.

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

	<u> </u>				
	PRESIDENCY UN BENGALUR				
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	SCHOOL OF ENG	INEERING			
END TERM FINAL EXAMINATION					
Even Semester: 2018-19			Date : 21 May 2019		
Course Code: ECE 216			Time: 3 Hours		
Course Name: Information T	heory and Coding		Max Marks: 80		
Program & Sem: B.Tech & \	/III Sem (Group-I)		Weightage: 40%		
Instructions: (i) Scientific calc	ulators are allowed.				
	Pa	rt A	·		
Answer all the Questions.	Each question carries	one mark.	(20Qx1M=20		
1.					
 i. Channel capacity is exactly equal to – (a) bandwidth of demand (c) Noise rate in the demand 		` ,	(b) Amount of information per second (d) None of the above		
(b) Volume o (c) Maximum	channel is : of digits used in coding f information it can tak rate of information tra h required for informat	ke ansmission			
iii. Entropy is basica (a) Rate of ir (c) Probabilit	•	(b) Average of (d) Disorder of			
(a) highest fr (b) maximun (c) maximun	non theorem sets a line equency that may be a capacity of a channe number of coding level number of quantizing	sent over a given cha I with a given noise lo rels in a channel with	evel a given noise level		
v. The maximum val (a) 1	ue of entropy is: (b) 2 (c) 3	(d) 4			
(a) p(x1,x2,x (b) p(x1,x2,x (c) p(x1,x2,x	nsity function of a Mai 3xn) = p(x1)p(x2/2 3xn) = p(x1)p(x1/2 3xn) = p(x1)p(x2)p 3xn) = p(x1)p(x2 *	x1)p(x3/x2)p(xn/; x2)p(x2/x3)p(xn- p(x3)p(xn)	1/xn)		

Roll No

vii. The capacity of Gaussian channel is (a) C = 2B(1+S/N) bits/s (c) C = B(1+S/N) bits/s						
viii. For M equally likely messages, the average amount of information H is (a) $H = log_{10}M$ (b) $H = log_{2}M$ (c) $H = log_{10}M^2$ (d) $H = 2log_{10}M$						
 ix. The negative statement for Shannon's theorem states that (a) If R > C, the error probability increases towards Unity (b) If R < C, the error probability is very small (c) Both a & b (d) None of the above 						
x. Code rate r, k information bits and n as total bits, is defined as (a) $r = k/n$ (b) $k = n/r$ (c) $r = k * n$ (d) $n = r * k$						
•	age information H= 2.0 for analog signal band					
limited to B Hz is (a) 8 B bits/sec (b) 4 B bits/s bits/sec	ec (c) 2 B bits/sec (d) 16 B					
xii. Information rate is defined as (a) Information per unit time (b) Average number of bits of information per second (c) rH (d) d. All of the above						
xiii. The mutual information (a) Is symmetric (c) Both a and b are correct	(b) Always non negative(d) None of the above					
xiv. The relation between entropy and mutual information is (a) $I(X;Y) = H(X) - H(X/Y)$ (b) $I(X;Y) = H(X/Y) - H(Y/X)$ (c) $I(X;Y) = H(X) - H(Y)$ (d) $I(X;Y) = H(Y) - H(X)$						
xv. The memory less source refers to (a) No previous information (b) No message storage (c) Emitted message is independent of previous message (d) None of the above						
xvi. The information I contained in a message with probability of occurrence is given by (k is constant)						
(a) $I = k \log_2 1/P$ (b) $I = k \log_2 F$	(c) $I = k \log_2 1/2P$ (d) $I = k \log_2 1/P^2$					
xvii. The expected information contained (a) Entropy (b) Efficiency	<u> </u>					
xviii. If the errors are corrected atend/s, it is known as 'Forward Error Correction' (FEC).						
(a) Transmitter (b) Receiver	(c) Both a and b (d) None of the above					

- xix. Which among the below stated logical circuits are present in encoder and decoder used for the implementation of cyclic codes?
 - A. Shift Registers B. Modulo-2 Adders C. Counters D. Multiplexers

(a) A & B (b) C & D (c) A & C

(b) 1

(d) B & D

xx. For a (6,4) block code where n = 6, k = 4 and $d_{min} = 3$, how many errors can be corrected by this code?

(a) 0

(c) 2

(d) 3

Part B

Answer all the Questions. Each question carries ten marks.

(3Qx10M=30M)

2. For the first order markov source with a source alphabets S={A,B,C} shown in the figure, compute the probabilities of the states and find Entropy of the source.

- 3. A source produces eight messages s1,s2,.....,s8 with respective probabilities of 0.5,0.125,0.125,0.0625, 0.0625, 0.0625,0.03125 and 0.03125.Obtain Shannon-Fano binary code and find efficiency and redundancy.
- 4. For the given channel matrix compute the mutual information I(X,Y) with $p(x_1)=0.6$ and $p(x_2)=0.4 P(Y/X)=[0.8 0.2:0.3 0.7]$

Part C

Answer both the Questions. Each question carries fifteen marks.

(2Qx15M=30M)

- 5. The generator polynomial for a (15,7) cyclic code is $g(p)=1+p^4+p^6+p^7+p^8$, find the code vector in systematic form for the message M(p)=p+p²+p³.Assume that the first and last bit of the code vector V(p) for $M(p)=p+p^2+p^3$ suffer transmission errors, find the syndromes of V(p).
- 6. A rate 1/3 convolutional encoder has generating vectors (1 0 0),(1 1 1) and (1 0 1)
 - a) Sketch encoder configuration
 - b) If the input message sequence is (1 0 1 1 0), determine the output sequence of the encoder.
 - c) Write the parameters of B C H codes.