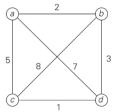


_School of Information and Science Mid - Term Examinations - November 2024

Semester: III	Date: 05-11-2024
Course Code: CSA2005	Time: 02.00pm to 03.30pm
Course Name: Analysis of Algorithms	Max Marks: 50
Program: BCA, BCD, BCI	Weightage: 25%

Instructions:


(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answ	ver AL	5Qx2M=10M									
1	Ι	list the various basic asymptotic efficiency classes.	2 Marks	L1	C01						
2		Write an algorithm to find the factorial of a given number using ecursion.	2 Marks	L1	C01						
3	Ι	Define an algorithm. List one of its advantages.	2 Marks	L1	C01						
4	V	What is bubble sort? What is its worst case time complexity?	2 Marks	L1	C02						
5	Ι	list one strength and one weakness of brute force algorithms.	2 Marks	L1	C02						
		Part B									
Answ	ver AL	L Questions. Each question carries 10 marks.	4QX10M=40M								
	6a.	Describe the notion of an algorithm.	4 Marks	L2	C01						
6	6b.	Define average-case and best-case efficiencies.	4 Marks	L1	C01						
	6c.	What is the basic operation of an algorithm, and why is it important in analyzing the algorithm's efficiency?	2 Marks	L1	C01						
Or											
7		Briefly explain asymptotic notations.	10 Marks	L2	C01						

	8a.	Outline the steps involved in the mathematical analysis of non-										- 4 Marks	L1	C01
		recursive algorithms.												
	8b.						of the	e time	e con	np	lexity for the	4 Marks	L3	C01
		following												
0		A() {												
8		int i,j,k,n; for(i=1;i<=n;i++) {												
		for(j=1;j<												
		for($k=1;k < 1$												
		printf("Pr												
	8c.		2 Marks	L1	C01									
		Write any two properties of an algorithm. 2 Marks L1 CO1 or												001
9	9a.	Outline the steps involved in the mathematical analysis of non-									- 4 Marks	L1	C01	
		recursive	algori	ithm	s.						-			
	9b.	Determine	e the	upp	oer bo	ound	l of	the t	ime	С	complexity for th	ne 6 Marks	L3	C01
		following												
		T(n)=1 + 2												
		T(n)=1 for n=1												
	10a.	Implomor	t tha	huhl		rt al	aori	thm o	n th	o f	following set of	4 Marks	L3	CO2
	10a.	-			JIE SU	i t al	gori	unno	II UI	eı	following set of	4 Mai KS	Г2	02
10	10b.	integers: 5,4,3,2,1 Write a C program or algorithm to print all distinct (unique)								6 Marks	L3	CO2		
	2001	elements			-			o p		••••		0 1 101110	20	001
			- 0		5			0	r					
11		Write and explain the selection sort algorithm with an example									e 10 Marks	L3	CO2	
		of your ch	oice.											
12		Write an algorithm for a pattern matching algorithm.									10 Marks	L3	CO2	
		Demonstr	ate th	e sa	me w	ith a	suit			пp	le.			
	4.0	or												
	13a.											6 Marks	L3	CO2
		of data with a bag capacity of (m = 16)Item1234567												
		Item						6						
		Weight	3	4	6	8	2	5	2	-				
40	104	Value	11	6	16	8	7	19	4]	TCD march law	4 Mandar	10	C02
13	130.		austiv	ve se	arch	lecn	iiiqu	le for	une g	giv	ven TSP problem	4 Marks	L3	CO2
		$a - \frac{2}{b}$												

