

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST-1

Even Semester: 2018-19

Date: 05 March 2019

Course Code: MEC 217

Time: 1 Hour

Course Name: Renewable Energy System

Max Marks: 40

Programme & Sem: B.Tech (MEC) & VIII (Group- I)

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer all the Questions. Each question carries four marks.

(4Qx4M=16M)

- 1. How is "Per Capita Energy Consumption" related with Standard of living?
- 2. Define the terms : a) Hour Angle b) Solar Azimuth Angle
- 3. Describe the flat plate collector with the help of a suitable diagram :-
- 4. Enumerate the different main applications of solar energy.-

Part B

Answer both the Questions. Each question carries six marks.

(2Qx6M=12M)

- 5. For New Delhi (28⁰ 35¹ N, 77⁰ 12¹ E), calculate the Zenith angle of the sun at 2.30 PM on February 2015. The Standard IST latitude for India is 81 ⁰ 44 ¹ E
- 6. Data for a Flat plate collector used for heating are given below

FACTOR	SPECIFICATION
Location & Latitude	Ahmadabad 23 ⁰ 03 ¹ N
Day & time	December 22 , 13 PM
Average Intensity of solar radiation	800 W/ m ²

Collector tilt	Latitude + 15 ⁰
Heat removal factor for collector	0.810
Transmittance of glass	0.88
Absorptance of the glass	0.90
Top loss coefficient(U _L) for collector	7.88 W/m ² °C
Collector fluid temperature	60°C
Ambient temperature	15°C

Calculate

- a) Solar altitude angle
- b) incident angle and
- c) Collector efficiency

Part C

Answer the Question. Question carry **Twelve** marks.

(1Qx12M=12)

7. Design a PV water pumping system for daily requirement of 6000 litres of water from a depth of 32 m. Use the following data :

Solar PV module used: "BP380" from BP Solar

Peak power = 80 W

Voltage at peak power (V_m) = 17.6 V

Current at peak power (I_m) = 4.55 A

Operating factor = 0.75

(Due to various reasons, solar panel does not operate at its rated peak power)

Mismatch factor = 0.85

(This factor arises due to operation at a point other than maximum power, if MPPT is use, this factor may be assumed to be unity)

Mono block (Pump + motor) efficiency = 30 %

Water density = 1000 kg / m²

Sunshine hours = 4h/day (peak of 1000 W/m² equivalent)

Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 2

Even Semester: 2018-19

Date: 15 April 2019

Course Code: MEC 217

Time: 1 Hour

Course Name: Renewable Energy Systems

Max Marks: 40

Program & Sem : B.Tech & VIII Sem (Group -1)

Weightage: 20%

Instructions:

(i) Scientific and Non-programmable calculators are permitted.

(ii) Steam table are permitted.

Part A

Answer all the Questions. Each question carries four marks.

(3Qx4M=12)

- 1. What are the factors responsible for distribution of wind energy on the surface of earth?
- 2. What raw materials can be used for production of Biogas? What is meant by MSW?
- 3. What are the merits and demerits of geothermal energy?

Part B

Answer both the Questions. Each question carries eight marks.

(2Qx8M=16)

4. Calculate the rotor radius for a wind turbine operating at wind speed of 7 m/s to pump water at a rate of 5m³/h with a lift of 6 m. Also calculate the angular velocity of the rotor Use the following data:

Water pump efficiency = 45 %,

Efficiency of rotor to pump = 80%,

Power coefficient = 0.25,

Tip seed ratio =1.11,

Air density = 1.2 kg/m^3

5. A 100 MW vapour dominated system uses saturated steam from a well with shut off pressure of 27.46 bar steam enters the turbine at 5.49 bar and condenses at 0.137 bar pressure. The turbine polytrophic efficiency is 0.82 and the turbine-generator combine mechanical and electrical efficiency is 0.90. The cooling tower exit is at 21°C. Calculate the necessary steam mass flow rate and the plant efficiency.

Part C

Answer the Question. The Question carries twelve marks.

(1Qx12M=12)

- 6. A group of 12 families in a village plans to install a KVIC Bio gas plant for energy needs of cooking, bathing and lighting. Calculate the volume of digester and the number of cattle required .Use the following data:
 - Total no of persons = 3 adults and 2 children in each family
 - Mass of wet cow dung produced/cattle/day = 10 kg
 - Heat energy required for cooking daily food = 1758 k J/person/day
 - Heat energy required for breakfast, snacks etc may assumed to be half of that required for cooking
 - Assume 20 Litres of water at 45°C is required for bathing per person
 - Assume 2 lamps of 40 W are used for 3 hrs daily by each family for lighting.
 - Gas burner efficiency 60%
 - LCV of Biogas =17500 kJ/m³
 - Gas yield of cow dung = 034 m³ /kg
 - Density of slurry =1090 k/m³ retention period =45 days

Assume the standard values of data wherever required:

6. The following data are used for design of a solar water heater:

Solar radiation

: 6 KWh /m²-day

Hot water required

:1000 Liters/day

Hot Water temperature

:55 °C

Cold water temperature

:15 °C

Specific heat for water

:4.18 kJ/kgK

- a) If a single collector has an area of 2.5 m² and its efficiency is 0.55, find the total area required and number of solar collector modules.
- b) The cost of solar collector is Rs. 2,00,000. An electrical heater is used with efficiency of 0.95 and cost of 1 unit = 1 kWh = Rs.6, calculate the payback period, if the solar water heater is used for 300 days per year.
- 7. Write short Notes on: a) OTEC Systems
 - b) Hydrogen fuel cell
 - c) Thermoelectric Power generation

D - II N -									
Roll No									
	L			L	L			L	

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Even Semester: 2018-19

Date: 21 May 2019

Course Code: MEC 217

Time: 3 Hours

Course Name: Renewable Energy Systems

Max Marks: 80

Program & Sem: B.Tech & VIII Sem (Group-I)

Weightage: 40%

Instructions:

- i. Draw neat sketches wherever necessary
- ii. Assume suitable data wherever necessary

Part A

Answer all the Questions. Each question carries one mark.

(20Qx1M=20M)

- 1. Objective type Questions:
 - i. Air mass ratio is minimum
 - a) When the Sun is at Zenith
- b) at sunrise

c) at sunset

- d) at 06.00 GMT
- ii. On 20 February 2015 , the declination angle, δ , will be
 - a) Zero
- b) $+23.45^{\circ}$
- c) -23.45°
- d) -11.58⁰

- iii. A solar cell is basically:
 - a) a voltage source, controlled by flux of radiation
 - b) a current source, controlled by flux of radiation
 - c) an uncontrolled current source
 - d) an uncontrolled voltage source
- iv. When solar radiation falls on earth surface, temperature of:
 - a) land mass rises faster than water mass
 - b) land mass rises slower than water mass
 - c) land mass and water mass rises uniformly
 - d) only land mass increases & water remains at fixed temperature
- v. Wind blows because of:
 - a) difference in temperature
- b) difference in latitude
- c) difference in longitude
- d) difference in surface roughness

vi. V	Vindmill works on the principle of :								
a) Rotation b) momentum c) gravitation d) collision								
vii.	During day time the surface wind blows :								
	a) from sea to land b) from land to sea								
	c) on sea only d) on land surface only								
viii.	Storage of biomass energy is :								
	a) very difficult b) inbuilt feature c) expensive d) impossible								
ix.	Biogas is predominantly :								
	a) hydrogen b) carbon dioxide c) carbon monoxide d) methane								
Χ.	Bi-diesel is:								
	a) Obtained from fermentation of sugars b) obtained from pyrolysis process								
	c) Exudates of pants d) an upgraded vegetable oil								
xi.	Which of the following is not a biomass?								
	a) Plants and tress b) Wood c) Cattle dung d) Water								
xii.	The process in which waste material is reduced to ashes is called :								
	a) Biodegradation b) composing c) recycling d) incineration								
xiii.	Main disadvantage of geothermal energy is :								
	a) Large area requirement b) low efficiency								
	c) drilling operation is noisy d) high cost								
XİV.	Ocean thermal energy conversion systems to generate power is most suitable in:								
	a) Sub-tropical region b) tropical region								
	c) cold region d) moderate climate region								
XV.	Ocean waves are indirectly caused by:								
	a) Gravitational force of moon								
	b) gravitational force of sun								
	c) solar energy								
	d) geothermal								
XVI.	Cogeneration means :								
	a) Power production using binary cycle								
	b) power production using two types of primary energy sources.								
	c) generation of ac as well as dc power in the same installation								
	d) generation of electricity and heat in a single installation								
XVII.	At solar noon, the hour angle is:								
va ::::	a)+ 90° b) - 90° c) zero d) + 180°								
	The collection efficiency of Flat plate collector can be improved by: a) putting a selective coating on the plate								
	ar commo a Sejective channo oil IDE NIALE								

b) evacuating the space above the absorber plate

	c) both a) & b)								
	d) None of the ab	oove							
xix.	The efficiency of va	arious types of collec	ors	with	_temperature.				
	a) increases, ded	creasing	b) decre	eases, incre	asing				
	c) remains same, increasing d) depends upon type of collector								
XX	Solar radiation flu	x is usually measure	d with the he	elp of a :					
	a) Anemometer	b) Pyranometer	c) Sunshir	e recorder	d) All of the above				
		Part	В						
Answer all the	Questions. Each	question carries e	i ght marks.		(3Qx08M=24M)				
2. The	observed differen	ce between the hig	h and low	water tide is	s 8.5 m, for a proposed				
tidal	site. The basin ar	ea is about 0.5 sq.	km which c	an generate	power for 3 hrs in each				
cycle	cycle. The average available head is assumed to be 8 m, and the overall efficiency of								
the g	the generation to be 70%. Calculate the power in h.p at any instant. Average specific								
weigh	nt of seawater is a	assumed to be 102	5 kg/ m³						
3. A the	rmoelectric gene	rator operates betv	een 250°C/	and 550°C	. The average value of				
the S	Seebeck coefficie	ent is -200 x 10 ⁻⁶ v	//K, the ge	nerator res	stance is 0.0023 ohm,				
optim	ıum value of figu	re of merit is 1.85	x 10 ⁻³ ⁰ K	and the the	ermal conductance is				
0.035	5 W/ °C. Find t	he optimum efficie	ncy and th	e thermal	efficiency for maximum				
powe	er output:								
4. Calc	ulate the angle n	nade by the beam	radiation w	ith normal	to a flat plate collector,				
					9.00 Hour, solar time on				
Dece	mber 1. The colle	ector is tilted at ang	e of 360 wi	th the horizo	ontal.				
		Part (
Answer all the	Questions. Each	question carries tv	velve mark	S.	(3Qx12M=36M)				

5. A single basin type tidal power plant has a basin area of 3 km². The tide has an average range of 10 m. Power is generated during flood cycle only. The turbine stops operating when the head on it falls below 3 m. Calculate the average power generated by the plant in single filling process of the basin if the turbine generator efficiency is 65%. Estimate the average annual generation of the plant:-

Page 2 of 4