Roll No.

School of Engineering

Mid - Term Examinations - November 2024

Semester: III Date: 06-11-2024

Course Code: MEC4001 **Time**: 11:45pm – 01:15pm

Course Name: Basic Thermodynamics Max Marks: 50

Program: B. Tech. Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.		5Qx2M = 10M			
1	Define temperature.	2 Marks	L1	CO01	
2	State Zeroth Law of Thermodynamics	2 Marks	L1	CO01	
3	What is thermometric property? Explain with few examples.	2 Marks	L1	CO01	
4	Define thermodynamic work.	2 Marks	L1	CO02	
5	Provide sign conventions for work and heat.	2 Marks	L1	CO02	

Part B

Answer ALL Questions. Each question carries 10 marks.		4QX10M=40M		
6	Define with sketches, System, Surroundings, boundary and Universe.	10 Marks	L2	CO 01
	or			
7	Define Process, Path, equilibrium process and quasi static process. Draw diagrams wherever possible.	10 Marks	L2	CO 01

8		A thermometric property X (length of mercury column in mercury in glass thermometer) is equal to 7.5 cm and 52.5 cm when the thermometer is in thermal equilibrium with ice point and steam point respectively. The temperature varies linearly with X. Now, assume that the temperature t^* on a certain temperature scale is defined by the equation, $t^* = a + b$ X2, where $t^* = 320$ and 2120 at the ice point and steam point respectively, with a and b as constants. Find the temperature t^* on this scale when the temperature is 1000 on the Fahrenheit scale.	10 Marks	L3	CO 01
		or			
9		The readings tA and tB of two Celsius Thermometers A and B agree at the ice point (0oC) and steam point (100o), but elsewhere they are related by the equation, $tA = l + m tB + ntB2$ where, l , m and n are constants. When both the thermometers are immersed in a well stirred bath, A registers 51oC whereas B registers 50oC. (a) Determine the reading on B when A registers 25oC and (b) which thermometer is correct?	10 Marks	L3	CO 01
10	10a	List different types of work.	03Marks	L2	CO 02
10		• •			
	10b	Explain p-dV work with equations and diagram	07 Marks	L2	CO 02
		or			
11	11a	List the different modes of Heat transfer.	03 Marks	L2	CO 02
	11b	Show that work is a path function.	07 Marks	L2	CO 02
12		A gas is compressed from an initial volume of 0.42 m3 to a final volume of 0.12 m3. During this quasi-static process, the pressure changes with volume according to the relation, $p = a + b V$, where, $a = 600 \text{ kPa}$ and $b = -1200 \text{ kPa/m3}$. Calculate the displacement work during the process by, (i) plotting the process on p-V diagram and finding the area and (ii) integration of the general formula for displacement work.	10 Marks	L3	CO 02
		or			
13		Consider the expansion of air inside a cylinder as shown in figure below. The initial volume is 0.025 m3 and the initial pressure is 10 MPa. If the air undergoes quasi-static process, according to the law, pV1.4 = constant to a final volume of 0.2 m3, determine (i) total work done by air, and (ii) amount of work done against the spring. Assume atmospheric pressure to	10 Marks	L3	CO 02

be 101.325 kPa.