Roll No.				
----------	--	--	--	--

School of Engineering Mid - Term Examinations - November 2024

Semester: III	Date: 07-11-2024
Course Code: ECE3004	Time : 09:30am – 11:00 am
Course Name: ELECTROMAGNETIC THEORY	Max Marks: 50
Program: SOE/BTECH/ECEC	Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.			2Mx5Q=10M		
1	Differentiate scalar, vector, scalar field, vector field with examples.		2 Marks	L1	C01
2	Define	e Unit Vector.	2 Marks	L1	C01
3	If $\vec{A} = 3\widehat{a_x} + 4\widehat{a_y} + \widehat{a_z}$ and $\vec{B} = 2\widehat{a_y} - 5\widehat{a_z}$, Find the angle between them by using cross product?		2 Marks	L1	CO1
4	Define Gauss's law.		2 Marks	L1	CO2
5	Define Coulomb's law.		2 Marks	L1	CO2
Part B Answer ALL Questions. Each question carries 10 marks. 4QX10M=40M					
6	6a	If A = 5ax + 3ay - 6az and B = 3ax - ay .	3 Marks	L1	C01
		Find the (i) Component of A along ay			
		(ii) Magnitude of 2A – B			
		(iii) Unit Vector along A + 2B			
	6b	If A = 2ax + 4 az, B = 3ax + 5ay – 3az. Find	5 Marks	L1	C01
		(i) A + B			

(ii) **5A – B**

(iii) The component of **A** along ay

(iv) A unit vector parallel to 3A + B

6c. Point P and Q are Located at (0,2,4) and (-3,1,5). Find the **2 Marks L3 CO1** distance vector from P to Q

0r1

7 Given the field quantities $\vec{P} = 2\hat{a_x} + \hat{a_z}, \vec{Q} = 2\hat{a_x} - \hat{a_y} + 2\hat{a_z},$ 10 L2 CO1

Marks

 $\vec{R} = 2\widehat{a_x} - 3\widehat{a_y} + \widehat{a_z},$

Calculate the following

- (a) $(\vec{P} + \vec{Q}) \ge (\vec{P} \vec{Q})$,
- (b) $\vec{Q} \cdot \vec{R} x \vec{P}$

(c) $\vec{P} \cdot \vec{Q} x \vec{R}$

(d) $\sin \theta_{QR}$

(e) $\vec{P}x(\vec{Q}x\vec{R})$

(f) A unit vector perpendicular to both **Q** and **R**

(g) Component of **P** along **Q**.

8	8a	Draw the spherical coordinates system and write the expression for differential length, surface and volume.	4Marks	L2	C01
	8b	Convert the points P(1,3,5), Q(0,-4,3) and R(-3,-4,-10) from Cartesian to Cylindrical and Spherical Coordinates.	6 Marks	L2	C01
		Or			
9	9a	Given that $F = x^2yz^2 ax + xyz ay + 4z az$. Find $\int_a^b F dl$ along the path AB if A is at (2,3,1) and B is at (3,3,1).	5 Marks	L3	C01
	9b	If a vector field $\mathbf{F} = (x - y)\widehat{ax} + xy \widehat{ay}$ then determine $\int_c \mathbf{F} \cdot d\mathbf{l}$, where c is an arc of curve $y = x^2$ in the xy plane from (0,0) to (3,5).	5 Marks	L3	C01

10	10a	Find the surface area of the plane with equation		L3	CO2	
		$2x + 3y + 6z = 60$, $0 \le x \le 4, 0 \le y \le 6$				
	10b	The plane with the equation $2x + 2y + z = 18$ with equation $x^2 + y^2 = 81$. Determine the surface area of the cross-sectional cut?	5 Marks	L3	CO2	
		Or				
11	11a	Find the constant m and n such that the surface		L3	C01	
		$mx^2 - 2nyz = (m + 4)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at (1, 1, 2).	6 Marks			
	11b	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and	4 Marks	L3	C01	
		$x^{2} + y^{2} - z = 3$ at (2,-1,2).				
12	12a	State Greens Theorem	2Marks	L1	C01	
	12b	Evaluate $\oint_c (2x^2 - y^2)dx + (x^2 + y^2)dy$ where C is the boundary enclosed by line x=0, y=0, x=2, y=3.	8Marks	L3	C01	
	Or					
	13a	Two point charges of 1mC and -2mC are located at (3,2,1) and (-1,-1,4) respectively. Calculate the force acting on a 10nC located at (0,3,1).	5 Marks	L3	CO2	
13	13b	Two-point charges of 5μ C and -3μ C are placed along a straight line 10m apart. Determine the force between them.	2 Marks	L3	CO2	
	13c	Suppose if there are N charges $Q_1, Q_2,, Q_N$ at various points then apply the superposition theorem and determine the force acting on a particular charge Q with a position vector \vec{r} .	3 Marks	L3	CO3	