Roll No.

PRESIDENCY UNIVERSITY BENGALURU School of Engineering

Mid-Term Examinations - November 2024

Semester: 7th Course Code: CIV3030 Course Name: Industrial Wastewater Treatment Program: B. Tech Date: 05-11-2024 Time: 09.30am to 11.00am Max Marks: 50 Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.		5Qx2M=10M			
1	What is Industrial wastewater	2 Marks	L1	CO1	
2	What is eutrophication	2 Marks	L1	CO1	
3	Define oxygen sag	2 Marks	L1	CO1	
4	List four biological treatment methods to remove organic matter.	2 Marks	L1	CO2	
5	Define Mixed Liquor	2 Marks	L1	CO2	

Part B

Answer ALL Questions. Each question carries 10 marks.		4QX10M=40M			
6	ба	Industrial and domestic wastewater are two primary types of wastewater that originate from different sources and contain distinct types of contaminants. List 5 differences between industrial and domestic wastewater.	5 Marks	L2	C01
	6b	A stream must be protected so that it can serve the best interests of the people using it. The important approach to protecting streams is by setting Effluent Standards. Write a short note on the effluent standard	5 Marks	L2	C01

- 7 7a After the wastewater is discharged into the stream what zones 5 Marks L2 CO1 of pollution are observed in the stream
 7b Illustrate the oxygen sag curve and explain how oxygen sag analysis is used to assess the depletion and subsequent
- 8 A municipal sewage plant discharges 15000 m³/day of **10 Marks L4**

recovery of dissolved oxygen in water bodies affected by

wastewater into a stream whose rate of flow is 0.5 m³/sec.

organic pollutants.

Municipal Discharge	Stream flow
BOD _{5,20} = 78 mg/l	BOD _{5,20} = 2 mg/l
Temperature 28°C	Temperature 23°C
DO = 2 mg/l	DO = 7 mg/l

The velocity of the mix is 0.3 m/s. The deoxygenation and reoxygenation constant at 20°C is 0.23 and 0.4 per day respectively. The saturation DO is 8.57 mg/l for the stream. Determine the critical DO and critical time.

0r

9 Treated effluent is discharged into a river. During peak summer **10 Marks CO1** L4 conditions, the wastewater has a maximum flow rate of 8,000 m^3 /day, a BOD_{5.20} of 45 mg/L, a DO concentration of 3 mg/l, and a temperature of 27°C. Upstream from the discharge point, the river has a minimum flow of 0.6 m³/sec, a BOD_{5.20} of 2 mg/L, a DO concentration of 7.2 mg/L, and a temperature of 22°C. The mixing of the wastewater and river water is nearly instantaneous, with a flow velocity of 0.18 m/s. The deoxygenation and reoxygenation constant at 20°C is 0.24 and 0.4 per day. The saturation DO is 8.6 mg/l. Calculate the dissolved oxygen profile for 100 km downstream of the discharge point. 10 A research team was tasked with assessing the health of a river **10 Marks** L3 **CO1** flowing through a small town. Define Stream Sampling. What are the factors that will be considered by the team before starting a stream sampling program

CO1

11		Natural bodies of water possess the inherent ability to address pollution and gradually restore their original quality over time. Can you explain the self-purification process in detail? Explain what actions are performed in the process of self-purification in the stream.	10 Marks	L3	CO1			
12	12a	Industrial wastewater is pre-treated on-site to reduce the harmful effects of effluents on treatment plant systems and surrounding water streams. Explain the Strength reduction pre- treatment technique of wastewater in detail.	5 Marks	L2	CO2			
	12b	Explain in detail how the Volume reduction pre-treatment technique is adopted in reducing the quantity of wastewater.	5 Marks	L2	CO2			
	Or							
13	13a	How does the trickling filter method work in the biological treatment of wastewater to effectively remove organic pollutants?	5 Marks	L2	CO2			
	13b	Removing dissolved organic matter from wastewater is a critical responsibility for engineers. As an engineer, how would you implement a lagooning technique in an oxidation pond to effectively remove organic matter?	5 Marks	L2	CO2			