Roll						
No.						

BENGALURU School of Engineering

Mid - Term Examinations - Nov 2024

Semester: VII **Date**: 05/11/2024

Course Name: ML and DL using FPGAMax Marks: 50Program: B Tech ECEWeightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Ans	wer A	5QX2M=10M			
1		pare the unsupervised learning with the reinforcement learning in hine learning.	2 Marks	L3	CO1
2	Expl	ain the posterior probability and prior probability in Naïve Bayes	2 Marks	L2	CO1
3	Dist	inguish between the Linear Regression and Logistic Regression.	2 Marks	L3	CO1
4	List	the applications of the Decision Tree Algorithm with examples.	2 Marks	L1	CO2
5	Shov	w the role of the K value in the KNN algorithm	2 Marks	L2	CO2
		Part B			
Ans	wer A	LL Questions. Each question carries 10 marks.	4QX10M=40M		
-	6a	Illustrate the applications of machine learning algorithms	4 Marks	L2	CO1
6	6b	List the applications of the KNN algorithm with examples.	6 Marks	L1	CO2
		Or			
7	7a	Demonstrate the Kernal Trick in Support Vector Machines	4 Marks	L3	CO1

The data set sample for the KNN algorithm is given in Table 1. 6 Marks L3 CO2 Solve for the decision of Tuhina Joseph, if her age is 5 assuming the value of K = 3.

Table 1 Dataset for the KNN algorithm example with 2 attributes and 1 outcome

Sl. No	Name	Age	Gender	Game
1	Albert	32	Male	Football
2	Mark	40	Male	None
3	Louisa	16	Female	Cricket
4	Natasha	34	Female	Cricket
5	Stephen	55	Male	None
6	Robin	40	Male	Cricket
7	Angelina	20	Female	None
8	Smith	15	Male	Cricket
9	Marie	55	Female	Football
10	Michael	15	Male	Football

8a Illustrate the advantages and disadvantages of the Support Vector 4 Marks L2 CO1 Machine algorithm

8b A thief has been stealing luxury cars from an area for the past 2 years. An investigation has been initiated to identify the culprit regressively for the past 1 year. One day, a car owner from the same area complained about the missing of the car. The details of the car are: Color = Red; Type = SUV; Origin = Domestic. Using the Naïve Bayes algorithm, predict whether the thief has stolen the car or not.

Table 2 Dataset to predict whether the car is stolen or not using

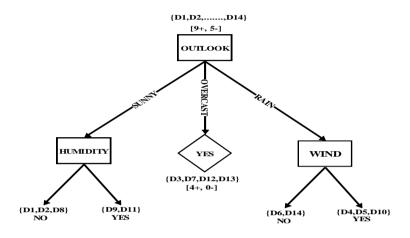
Naïve Bayes Classifier

Sl. No	COLOR	TYPE	ORIGIN	STOLEN
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes

6 Marks

L3

C01


6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

 $\mathbf{0r}$

9a Develop the VHDL code for the following

9

4 Marks L3 CO2

Biologists have invented new species say M and N in their laboratories. They have started their investigations based on the parameters namely color, height, number of Legs, and smell. As of now, 10 numbers of species have been identified as either M or N category. What would be the decision for the 11th sample with the Color = Green; Leg = 2; Height = Tall; Smell = No? Use the Naïve Bayes Algorithm to predict. Z

6 Marks L3 CO1

Table 3 Dataset to predict the species using Naïve Bayes Classifier

Sl.No	Color	Legs	Height	Smell	Species
1	White	3	Short	Yes	M
2	Green	2	Tall	No	M
3	Green	3	Short	Yes	M
4	White	3	Short	Yes	M
5	Green	2	Short	No	N
6	White	2	Tall	No	N
7	White	2	Tall	No	N
8	White	2	Short	Yes	N

Page 3 of 5

10a	Develop the VHDL Code for the 8 bit synchronous UP/ DOWN	4 Marks	L3	CO2
	counter using the if else construct			

10b Solve the linear regression for the dataset as given in Table 4

6 Marks L3 CO1

1	n
1	υ

11

12

100	Table 4 Dataset two classes X and Y for linear regression								
X	2	4	6	8	10	12	14	16	
v	1	2	Ľ	7	Q	11	12	2	

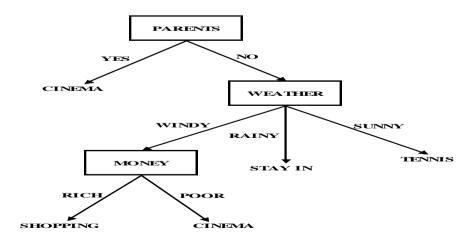
0r

11a	Discuss the advantages and disadvantages of Logistic Regression	4 Marks	L2	CO1
-----	---	---------	----	-----

11b Illustrate the steps involved in the development of the KNN 6 Marks L3 CO2 algorithm with a suitable example.

12a	Construct the VHDL code for the 3: 8 Decoder using the lower	4 Marks	L3	CO2
	order design in Dataflow modeling with its test-bench			

12b Solve the linear regression for the dataset shown in Table 5 6 Marks L3 CO1


Table 5 Dataset two classes Age and Sugar Level for linear regression

Sl.No	Age (X)	Sugar Level (Y)
1	43	99
2	21	65
3	25	79
4	42	75
5	57	87
6	59	81
7	55	?

 $\mathbf{0r}$

13a Develop the VHDL code for the following

5 Marks L3 CO2

13b From the given data-set in Table 6, find (x,y) = 57,170 whether 5 Marks L3 CO2 belongs to Under or Normal Weight

Table 6 Data set for weight categorization with 2 classes

Height (CM)	Weight (Kg)	Class
167	51	Underweight
182	62	Normal
176	69	Normal
173	64	Normal
172	65	Normal
174	56	Underweight
169	58	Normal
173	57	Normal
170	55	Normal
170	57	?