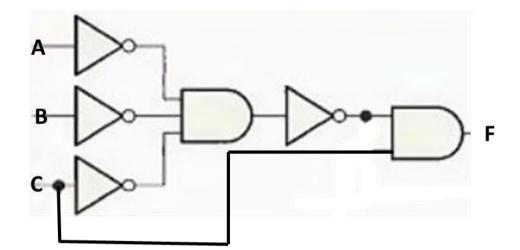
Roll No.										
----------	--	--	--	--	--	--	--	--	--	--

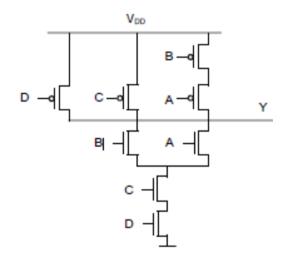
School of Engineering

Mid - Term Examinations - Nov 2024


Semester: 5 th			Date: 06/11/2024				
Course Code: ECE3090Time			e: 02.00pm to 03.30pm				
Course Name: Digital System Design using VERILOG Max Ma			r ks : 50				
Program:B.Tech Weight			t age : 25%				
Instructions: (i) Read all questions carefully and answer accordingly. (ii) Do not write anything on the question paper other than roll number. Part A							
Answer ALL the Questions. Each question carries 2marks. 2Mx5Q=10M							
1	VLSI is an implementation technology for electronic circuitry anal digital. List two popular VLSI platforms.	ogue or	2 Marks	L1	C01		
2	Design methodology and hierarchy deiced the approach of solving problems List two design methodology described in Verilog design		2 Marks	L1	C01		
3	Demonstrate the levels of abstraction in VLSI using necessary diag	gram.	2 Marks	L1	C01		
4	The basic unit of description in Verilog is the module, define module design a X-Nor gate.	ale to	2 Marks	L1	C01		
5	Explain the types of delays in Gate Level modeling of Verilog HD examples	L with	2 Marks	L1	CO2		

Part B

Answer ALL Questions. Each question carries 10 marks.			4QX10	4QX10M=40M		
6	6a	Develop the Verilog HDL code for the SR Flip Flop using the logic diagram. Verify the developed code by using suitable test the input cases.		L3	CO2	
	6b	Utilize NAND gate to design the full adder circuit in gate level modeling of Verilog HDL code. Verify the developed code using the Test bench.	6 Marks	L3	CO2	


7	7a	Model the 3 input NAND gate in transistor level to verify using the test bench	4 Marks	L3	CO2
	7b	Make use of 2 input EXOR gate transistor level circuit to verify its truth table.	6 Marks	L3	CO2
8	8a	Model the 8:3 Encoder using the Boolean expression and verify the test cases of the input.	4 Marks	L3	C01
	8b	Develop the ALU circuit with using the conditional operator with its test bench.	6 Marks	L3	C01
		OR			
9	9a	Develop the D-Flip Flop using the Dataflow modeling and simulate for all the test cases.	4 Marks	L3	C01
	9b	Utilize NOR gate to design the full subtractor in dataflow modeling of Verilog HDL code. Verify the developed code using the Test bench.	6 Marks	L3	C01
10	10a	In data flow modelling the keyword "assign" is used to define the output of a circuit. Draw the schematic corresponding to the output equation given below which uses conditional operators:	6 Marks	L	C01
		assign y = a ? (b ? i1 : i2) : (c ? i3 : i4)			
	10b	Draw the schematic of the logic circuit described by the Verilog code below:	4 Marks	L	CO2
		module example (a, b, c, y);			
		input a, b, c;			
		output y;			
		assign $y = -a \& b \& -c -a \& -b \& -c a \& -b \& -c;$			
		endmodule			
		OR			
11	11a	A combinational circuit is a type of logic where each output depends only on its present input. For the combinational circuit shown below,	6 Marks	L	CO2

write the Gate Level (Structural) Verilog description. Make sure that the internal and external signals are properly labeled.

11b Write the test bench for the circuit shown in 11(a) above. 4 Marks L CO2

12 12a Switch level modeling in Verilog is a method used to describe digital 6 Marks L CO2 circuits by focusing on the behavior of MOS transistors as electronic switches. For the circuit shown below, write the expression for the output 'Y' and write the Switch Level Verilog description. Make sure that the internal and external signals are properly labeled.

12b Write the test bench for the circuit shown in 12(a) above by considering 4 Marks L CO2 only 4 combinations in which one of the transistors will have an input '1' and remaining three will have '0s'. e.g. ABCD = 1000.

OR

13	13a	Construct the 3 input NOR gate in transistor level modelling.	4 Marks	L	CO
	13b	Develop the function $F = A + B(C+D)$ using the switch level modeling	6 Marks	L	CO
		and verify using the test bench.			