Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

<u>School of Engineering</u> Mid - Term Examinations – November 2024

Semester: I	Date: 6-11-2024
Course Code: MAT1001	Time : 09:30am – 11:00am
Course Name: CALCULUS AND LINEAR ALGEBRA	Max Marks: 50
Program: B.TECH	Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2 marks.			2Mx5Q=10M			
1	Define Echelon form of a matrix.	2 Marks	L1	C01		
2	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.	2 Marks	L1	C01		
3	Find the eigenvalues of the matrices A and A^{-1} where $A = \begin{bmatrix} 1 & -1 & -5 \\ 0 & -8 & -2 \\ 0 & 0 & 2 \end{bmatrix}.$	2 Marks	L1	C01		
	If -2 and 6 are the two Eigenvalues of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. Find the third Eigenvalue of A?	2 Marks	L1	C01		
5	State any two applications of Cayley-Hamilton theorem.	2 Marks	L1	C01		

Part B

Answer ALL Questions. Each question carries 10 marks. 4QX10M=40M

6 Solve the following system of equations by Gauss elimination method 10 Marks L2 CO1 x + 2y + z = 3, 2x + 3y + 3z = 10, 3x - y + 2z = 13.

OR

7 Solve the following system of equations by Gauss Jordan method 10 Marks L3 CO1 2x + y + 4z = 12, 4x + 11y - z = 33, 8x - 3y + 2z = 20.

8	Solve the following system of equations by Gauss elimination method	10 Marks	L2	C01
	x + y + z = 9, $x - 2y + 3z = 8$, $2x + y - z = 3$.			

9 Find all the eigenvalues and the corresponding eigenvectors of the 10 Marks L2 CO1 matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

10 Solve the following system of equations by Gauss Jordan method 10 Marks L2 CO1 2x + 5y + 7z = 52, 2x + y - z = 0, x + y + z = 9.

OR

11 Find all the eigenvalues and the corresponding eigenvectors of the 10 Marks L2 CO1 matrix $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$.

12 Verify the matrix
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 satisfies its characteristic 10 Marks L2 CO1 equation, and use it to find A^{-1} .

OR

13 Verify Cayley- Hamilton theorem for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & 1 \end{bmatrix}$ 10 Marks L2 C01 and use it to find A^{-1} .