|--|

BENGALURU School of Computer Science and Engineering

Mid - Term Examinations - November 2024

Semester: III	Date: 4-11-2024
Course Code: MAT1002	Time : 11:45am – 01:15pm
Course Name: Transform Techniques, Partial	Max Marks: 50
Differential Equations and Their Applications	
Program: B.Tech	Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.			2Mx5Q=10M		
1.	Define Periodic Function with example.	2 Marks	L1	CO1	
2.	Show whether the function $f(x) = x^4$ is even or odd function	2 Marks	L1	CO1	
3.	Find the Laplace transform of $e^{2t} + 4t^3 - 2sin3t$.	2 Marks	L1	CO2	
4.	Find the Laplace transform of $f'(t)$, where $f(t) = \sin(4t)$.	2 Marks	L1	CO2	
5.	Find the inverse Laplace transform of $\frac{2}{s+3} + \frac{5s}{s^2+9}$	2 Marks	L1	CO2	

Part B

Answer ALL Questions. Each question carries 10 marks.

4QX10M=40M

OR

7. Construct the Fourier series of the function
$$f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$$
 10 Marks L3 C01

	8a	Construct the half range cosine series of	5 Marks	L3	CO1
O		$f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \end{cases}$			
8.	8b	Construct the Fourier sine series for the function $f(x) = e^{ax}$ for	5 Marks	L3	CO1
		$0 < x < \pi$, where a is constant			
		OR			
		Develop the Fourier series of $f(x)$ defined in the interval $(0,2\pi)$ by	10 Marks	L3	CO1
		means of the table of values given below. Find the series up to the			
0		second harmonics.			
9.		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		f(x) 1.0 1.4 1.9 1.7 1.5 1.2 1.0			
	10a	Construct the Laplace transform of $t e^{-t} sin 3t$.	5 Marks	L3	CO2
		Concerned Euphage transform of the concern	0 1 101110	20	332
10.	10b	Construct the Laplace transform of $\frac{\cos(at)-\cos(bt)}{t}$	5 Marks	L3	CO2
		$ \begin{array}{ccc} OR \\ t^2 & 0 < t < 2 \end{array} $	10 Marks	L3	CO2
4.4		Develop the function $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 4t, & 2 < t \le 4 \\ 8, & t > 4 \end{cases}$ in terms of	10 Mai KS	цэ	COZ
11.		unit step function and hence find their Laplace transform.			
		S	5 Marks	L3	CO2
	12a	Construct the inverse Laplace transform of $\frac{s}{s^2+4s+5}$	0 1 101110	20	332
12.	12b	Construct the inverse Laplace transform of $log(\frac{s+1}{s-1})$	5 Marks	L3	CO2
		(s-1)			
		OR			
	13a	Find the Inverse Laplace transform of $\frac{3s^2+4}{s^5}$	2 Marks	L1	CO2
13.					
10.	13b	Construct the inverse Laplace transform of $\frac{4s+5}{(s+2)(s-1)^2}$	8 Marks	L3	CO2