Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

BENGALURU <u>School of Engineering</u> Mid - Term Examinations - November 2024

Program: B.Tech	Weightage: 25%
Course Name: Shale Gas	Max Marks: 50
Course Code: PET2016	Time : 09:30am – 11:00am
Semester: VII	Date:07-11-2024

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

<u>Part A</u>

Answer ALL the Questions. Each question carries 2marks.			5QX2M=10M			
1	Define shale as a reservoir.	2 Marks	L1	C01		
2	Define anisotropy in the context of gas shales.	2 Marks	L1	C01		
3	Identify characteristic of gas shale that distinguishes it from conventional reservoirs.	2 Marks	L1	CO2		
4	List the factors that contribute to wellbore instability in gas shale reservoirs.	2 Marks	L1	CO2		
5	Identify one way in which organic content influences shale gas potential.	2 Marks	L1	C01		
	Part B					

Ansv	ver AL	L Questions. Each question carries 10 marks.	4QX10M=40M			
6	6a	Explain why shale exhibits different strength properties based on the direction of applied loads.	5 Marks	L2	CO2	
6	6b	Illustrate how the orientation of the wellbore influences the risk of slippage along bedding planes in shale formations.	5 Marks	L2	CO2	

0r

7	7a	Illustrate the challenges arise from shale-drilling fluid interaction during drilling operations? Describe how this interaction can lead to pore pressure buildup and wellbore instability.	5 Marks	L2	CO2						
	7b	Elucidate limited information on the geo-mechanical properties of gas shale reservoirs. Explain how this gap affects drilling and reservoir management.	5 Marks	L2	CO2						
8	8a	Explain how properties like Young's modulus, Poisson's ratio, and unconfined compressive strength (UCS) help in determining the suitability of a shale reservoir for hydraulic fracturing.	5 Marks	L2	CO2						
	8b	If a wellbore is drilled at 30° to the bedding planes, what can be inferred about its stability, and mention the steps that can be taken to mitigate instability during the drilling operation based on the concepts discussed.	5 Marks	L2	CO2						
	Or										
9	9a	Why is brittleness important for shale reservoirs in hydraulic fracturing? Discuss how Young's modulus and Poisson's ratio help assess brittleness and suitability for fracturing.	5 Marks	L2	C01						
	9b	Explain how shale composition, particularly the presence of illite, silts and smectite, influences its suitability for hydraulic fracturing.	5 Marks	L2	C01						
10	10a	Describe the point load test method for measuring rock strength. How does it relate to the unconfined compressive strength (UCS) of the material?	5Marks	L2	CO2						
	10b	Illustrate the scratch test and how it is used to determine the unconfined compressive strength (UCS) of rocks. What are its advantages over traditional methods?	5Marks	L2	CO2						
		Or									
11	11a	Define the Thomsen parameters ε , γ , and δ . Discuss their significance in characterizing the anisotropy of VTI media.	5 Marks	L2	CO2						
	11b	Demonstrate key differences between marine shale and non- marine shale in terms of depositional environment and mineral composition.	5 Marks	L2	CO2						

Page **2** of **3**

12Analyze how basin structure influences the accumulation of
shale gas. Describe the geological features within a basin can
affect the trapping of gas.10 Marks
L3C01

0r

13Discuss how stratigraphic variations, such as changes in
lithology and thickness, influence the reservoir quality of shale
gas formations. Mention stratigraphic features that can
enhance or diminish gas production potential.10 Marks
L3C01