Roll No.

School of Engineering

Mid - Term Examinations - November 2024

Semester: III **Date**: 07/11/2024

Course Name: Directional Drilling Technology Max Marks: 50

Program: B.Tech. (Petroleum) **Weightage**: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.		2Mx5Q=10M		
1	Define KOP. State the unit of BUR.	2 Marks	L1	CO1
2	Define Longitude and Latitude. Why we express them in angles?	2 Marks	L1	CO1
3	Describe Whipstock. Differentiate between two types of Whipstock available in O&G industry	2 Marks	L1	CO1
4	State any two reason for selection of Bent sub as a deflection tool over Whipstock and Jet Deflection bit.	2 Marks	L1	CO2
5	Explain the meaning of "Dog-leg" in directional drilling. How it can be minimized?	2 Marks	L1	CO2

Part B

Answer ALL Questions. Each question carries 10 marks.

4QX10M=40M

CO1

10 Marks L2

Directional wells introduce a unique set of challenges beyond the typical issues faced in vertical drilling. These challenges arise from factors like the well's complex profile and the diminished influence of gravity along the borehole's axis. Yet, despite these added complications, the industry continually opts for directional drilling. What compels us to pursue this technique? Discuss any five compelling reasons why directional drilling is preferred over vertical drilling, accompanied by relevant diagrams to illustrate these advantages.

In wellbore operations, various deflection tools are used to change the trajectory of the wellbore. Discuss how whipstocks function as deflection tools and the challenges they present in comparison to other methods. Identify three advantages of using jet deflection techniques over whipstocks in directional drilling applications.	10 Marks	L2	C01			
Explain the different types of directional well profiles along with their key features. Provide a detailed diagram for each profile, ensuring proper labeling to illustrate the distinct characteristics of each well path.	10 Marks	L2	CO1			
\mathbf{Or}						
In drilling a Type II directional well profile, how do the fulcrum, stabilization, and pendulum principles interact to influence the trajectory and stability of the wellbore, and what challenges do these principles present when navigating complex geological formations? Additionally, what innovative strategies could be employed to optimize these principles in real-time drilling operations to enhance efficiency and safety?	10 Marks	L2	CO1			
Examine the various types of horizontal well profiles, highlighting their distinct characteristics and suitability for different drilling environments. Furthermore, discuss the critical specifications that should be evaluated when choosing a horizontal well profile for a specific project, considering factors such as target depth, geological conditions, and production objectives	10 Marks	L2	CO2			
	10 Morks	12	CO2			
their advantages in drilling operations.	TO MAIKS	L/L	CUZ			
You are tasked with drilling a directional well from an offshore platform to intersect a target that is located 15,000 ft horizontally from the platform. The well will follow a Type I profile (build and hold) with a kick-off point (KOP) established at 1,000 ft. The build-up rate is set at 6° per 400 ft, and the hold section will extend 10,000 ft. Calculate the inclination at the end of the build section. Determine the exact coordinates where the build section concludes. Identify the precise location of the target.	10 Marks	L3	CO2			
	trajectory of the wellbore. Discuss how whipstocks function as deflection tools and the challenges they present in comparison to other methods. Identify three advantages of using jet deflection techniques over whipstocks in directional drilling applications. Explain the different types of directional well profiles along with their key features. Provide a detailed diagram for each profile, ensuring proper labeling to illustrate the distinct characteristics of each well path. Or In drilling a Type II directional well profile, how do the fulcrum, stabilization, and pendulum principles interact to influence the trajectory and stability of the wellbore, and what challenges do these principles present when navigating complex geological formations? Additionally, what innovative strategies could be employed to optimize these principles in real-time drilling operations to enhance efficiency and safety? Examine the various types of horizontal well profiles, highlighting their distinct characteristics and suitability for different drilling environments. Furthermore, discuss the critical specifications that should be evaluated when choosing a horizontal well profile for a specific project, considering factors such as target depth, geological conditions, and production objectives Or Describe the operating principle of downhole motors and discuss their advantages in drilling operations. You are tasked with drilling a directional well from an offshore platform to intersect a target that is located 15,000 ft horizontally from the platform. The well will follow a Type I profile (build and hold) with a kick-off point (KOP) established at 1,000 ft. The build-up rate is set at 6° per 400 ft, and the hold section will extend 10,000 ft. Calculate the inclination at the end of the build section. Determine the exact coordinates where the build section concludes.	trajectory of the wellbore. Discuss how whipstocks function as deflection tools and the challenges they present in comparison to other methods. Identify three advantages of using jet deflection techniques over whipstocks in directional drilling applications. Explain the different types of directional well profiles along with their key features. Provide a detailed diagram for each profile, ensuring proper labeling to illustrate the distinct characteristics of each well path. Or In drilling a Type II directional well profile, how do the fulcrum, stabilization, and pendulum principles interact to influence the trajectory and stability of the wellbore, and what challenges do these principles present when navigating complex geological formations? Additionally, what innovative strategies could be employed to optimize these principles in real-time drilling operations to enhance efficiency and safety? Examine the various types of horizontal well profiles, highlighting their distinct characteristics and suitability for different drilling environments. Furthermore, discuss the critical specifications that should be evaluated when choosing a horizontal well profile for a specific project, considering factors such as target depth, geological conditions, and production objectives Or Describe the operating principle of downhole motors and discuss their advantages in drilling operations. 10 Marks 10 Marks 10 Marks 10 Marks 11 Marks 12 Marks 13 Marks 14 Marks 15 Marks 16 Marks 17 Marks 18 Marks 19 Marks 19 Marks 10 Marks 10 Marks 10 Marks 10 Marks 11 Marks 11 Marks 12 Marks 13 Marks 14 Marks 15 Marks 16 Marks 17 Marks 18 Marks 19 Marks	deflection tools and the challenges they present in comparison to other methods. Identify three advantages of using jet deflection techniques over whipstocks in directional drilling applications. Explain the different types of directional well profiles along with their key features. Provide a detailed diagram for each profile, ensuring proper labeling to illustrate the distinct characteristics of each well path. Or In drilling a Type II directional well profile, how do the fulcrum, stabilization, and pendulum principles interact to influence the trajectory and stability of the wellbore, and what challenges do these principles present when navigating complex geological formations? Additionally, what innovative strategies could be employed to optimize these principles in real-time drilling operations to enhance efficiency and safety? Examine the various types of horizontal well profiles, highlighting their distinct characteristics and suitability for different drilling environments. Furthermore, discuss the critical specifications that should be evaluated when choosing a horizontal well profile for a specific project, considering factors such as target depth, geological conditions, and production objectives Or Describe the operating principle of downhole motors and discuss their advantages in drilling operations. 10 Marks L2 You are tasked with drilling a directional well from an offshore platform to intersect a target that is located 15,000 ft horizontally from the platform. The well will follow a Type I profile (build and hold) with a kick-off point (KOP) established at 1,000 ft. The build-up rate is set at 6° per 400 ft, and the hold section will extend 10,000 ft. Calculate the inclination at the end of the build section. Determine the exact coordinates where the build section concludes.			

To support your calculations, draw a detailed diagram that illustrates the horizontal distance (HD), total vertical depth (TVD), and measured depth (MD) of the wellbore, ensuring all measurements

and relationships are clearly represented.

A Type-I directional well is being drilled from location A (30 ft. N, 50 ft. E) to location T (8,000 ft. S, 4,000 ft. W). The horizontal departure to the target is 10,000 ft. The radius of curvature for the buildup section is 5,000 ft. The well is building an angle from the kick-off point (KOP) and ends at point C. The horizontal displacement and measured depth at point C are 3,000 ft. and 7,500 ft. respectively.

Based on the above conditions, draw a geometric profile of the wellbore and state the exact location of points C and T in terms of measured depth (MD), horizontal distance (HD), and total vertical depth (TVD). Additionally, determine and include the angle of inclination at point C along with the build-up rate. Ensure to indicate the KOP value in the diagram.