Roll No.

BENGALURU

School of Engineering

Mid - Term Examinations - November 2024

Semester: V Course Code: CIV3027_v02 Course Name: Foundation Engineering **Program: B-Tech**

Time: 11.45am to 01.15pm Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Ans	Answer ALL the Questions. Each question carries 2marks.			5Qx2M=10M					
1	Explain finite and infinite slopes with a neat sketch.			L1	CO1				
2	List tł	ne various factors of safety for slope stability with formulas.	2 Marks	L1	CO1				
3	List any four assumptions made in Rankine's theory.			L1	CO2				
4	Explain Isobars with a neat sketch.			L1	CO2				
5	Active and Passive earth pressure are the pressures which are exerted on the retaining wall. Amongst them, which exerts more pressure and justify your answer.			L2	CO2				
Part B									
		Part B							
Ans	wer AL	Part B L Questions. Each question carries 10 marks.	4QX10)M=4()M				
Ansv 6	wer AL 6a		4QX10 6 Marks)M=4(L2)м СО1				

Date: 07-11-2024 Max Marks: 50

		01						
7	7a	Explain friction circle method of analysis of slopes.	7 Marks	L2	C01			
	7b	Compute the factor of safety with respect to cohesion, of a clay stratum laid at 1 in 2 slope to a height of 10 m, if the angle of internal friction ϕ =10 ⁰ ; c=25 kN/m ² , Taylor's Stability number Sn=0.064 and γ =19 kN/m ³ . What will be the critical height of the slope in the soil?	3 Marks	L3	C01			
8	8a	Explain Swedish circle method of analysis of slope ($\phi_{u}\text{=}0$ analysis) with a neat sketch	6 Marks	L2	C01			
	8b	Compute the factor of safety with respect to cohesion for a submerged embankment, 25 m high and having a slope of 40°. (c=40 kN/m ² , φ = 10°, Ysat = 18 kN/m ³ and Taylor's stability number Sn=0.097).	4 Marks	L3	C01			
	Or							
9	9a	Explain Swedish circle method of analysis (c- ϕ analysis) with a neat sketch	8 Marks	L2	C01			
	9b	The soil has the following properties: cohesion (c) = 26.7 kN/m^2 , mobilized cohesion = 17.8 kN/m^2 , angle of friction (φ) = 15° , mobilized angle of friction (φ_m) = 12° , the average inter granular pressure is 102.5 kN/m^2 . Compute the Factor of safety with respect to strength, cohesion and friction.	2 Marks	L3	CO1			
10		Explain Newmark's Influence chart with a neat sketch.	10 Marks	L2	CO2			
	Or							
11	11a	Three parallel strip footings 3 m wide each and 5 m apart center to center transmit contact pressures of 200, 150 and 100 kN/m2 respectively. Compute the vertical stress due to the combined loads beneath the centers of each footing at a depth of 3 m below the base. Assume the footings are placed at a depth of 2 m below the ground surface. Use Boussinesq's method for line loads.	6 Marks	L3	CO2			
	11b	List any four types of loads applied on soil.	4 Marks	L1	CO2			
12		Develop the expression for Rankine's earth pressure theory for cohesion less soil for active case.	10 Marks	L3	CO2			
Or								
13		Explain various types of earth pressures with a neat sketch.	10 Marks	L2	CO2			

0r

Page 2 of 2