Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

School of Engineering

Mid - Term Examinations - November 2024

Semester: III **Date**: 06/11/2024

Course Name: DIGITAL ELECTRONICS Max Marks: 50

Program:B.Tech.,(ECE) **Weightage**: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Ansv	wer A	5Qx2M=10M				
1	The Boolean theorems and Laws are useful in manipulating the logic expression. The equality $A' \cdot B' \cdot C' = (A + B + C)'$ is known as			Remember	CO1	
2	A • B	= B • A is called as	2 Marks	Remember	CO1	
3		olean expression is specified as $A \cdot 0 = 0$, The dual of given ession is	2 Marks	Remember	CO1	
4	The product terms in the canonical SOP form is called a minterm. The minterm representation for 111 is			Remember	CO1	
5	Drav	the logic symbol and truth table for NAND universal gate:	2 Marks	Remember	CO1	
		Part B				
Ansv	wer A	LL Questions. Each question carries 10 marks.		4QX10M=40M		
6	a.	Find the equivalent Decimal value of given Binary(10111.101) ₂ :	4Marks	Understand	CO1	
	b.	Draw OR gate logic using NOR gate:	2Marks	Remember	CO1	
	c.	Draw ExOR gate using minimum number of NAND gate	4Marks	Remember	CO1	

7	a.	Find the equivalent Binary value of given Decimal (36.125) ₂ :	4Marks	Understand	CO1				
	b.	Draw AND gate logic using NAND gate	2Marks	Remember	CO1				
	c.	Draw the ExOR gate using minimum number of NOR gate	4Marks	Remember	CO1				
8	a.	Find equivalent Hexadecimal value of $(377)_8$:	2Marks	Understand	CO1				
	b	Find A-B using one's complement subtraction, when A=1011 , B=1000 :	4Marks	Understand	CO1				
	С	Y=AB+AC+BC derive the Canonical SoP and Draw the logic diagram using NAND only:	4Marks	Understand	CO2				
Or									
9	a.	Find equivalent Octal value of (A1B) ₁₆ :	2Marks	Understand	CO1				
	b.	Find A-B using Two's complement subtraction, when A=1011 , B=1000 :	4Marks	Understand	CO1				
	c.	F=XY+XZ+YZ derive the Canonical SoP and Draw the logic diagram using NAND only:	4Marks	Understand	CO2				
10		Implement the given Boolean function using minimum number of NAND gates only: $F(A,B,C,D)=\sum(1,3,4,11,12,13,14,15)$	10Marks	Apply	CO2				
Or									
11		Implement the given Boolean function using minimum number of NAND gates only: $F(W \times Y Z) = \sum (0,2,3,6,8,9,13,14)$	10Marks	Apply	CO2				
12		Using K-map method, Simplify the given function (minimum SOP) and realize using basic gates: F(A,B,C,D) = A'B'C'D' + AC'D'+ B'CD'+ A'BCD + BC'D	10Marks	Apply	CO2				
		or							
13		Using K-map method, Simplify the given function (minimum SOP) and realize using basic gates: $F=\sum m(0,2,3,6,7,13) + d(8,10,11,15)$	10Marks	Apply	CO2				