Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

School of Engineering

Mid - Term Examinations - November 2024

Semester: V **Date**: 07/11/2024

Course Code: ECE3021 Time: 11.45am to 01.15pm

Course Name: Optoelectronic Materials Max Marks: 50

Program: B.Tech Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.			5Qx2M=10M			
1	List out the different stages of free electron theory.	2 Marks	L1	CO1		
2	State Drude-Lorentz theory of metals.	2 Marks	L1	CO1		
3	Compare degenerative and non-degenerative semiconductors.	2 Marks	L1	CO1		
4	What are linear dielectric materials?	2 Marks	L1	CO1		
5	Differentiate coherent and non-coherent sources in interference.	2 Marks	L1	CO2		
	Part B					
Ans	wer ALL Questions. Each question carries 10 marks.	4QX10M=40M				
6	Electrical conductivity in solids measures how easily electric current can pass through a substance. Derive an expression for the electrical conductivity of solids using Newton's law of motion.	10 Marks	L2	CO1		
	0r					
7	The seven crystal systems are a method of classifying crystals according to their atomic lattice or structure. The atomic lattice is	10 Marks	L2	CO1		

patterns. Represent all seven crystals with conventional unit cells neatly.

8	Capacitors use non-conducting materials or dielectric, to store	10 Marks	L2	CO1
	charge and increase capacitance. Dielectrics when placed			
	between charged capacitor plates, become polarized which			
	reduces the voltage across the plate and increases the			
	capacitance. Derive the expression of the effect of dielectrics in			
	the capacitor.			

0r

- Capacitance-voltage (C-V) characterization is used to analyze the 10 Marks L2 CO1 electrical properties of dielectric materials, particularly in semiconductor devices like MOS capacitors. Explain the C-V characteristics of MOSFET in detail with different modes of operation.
- The basic principle of strained-layer epitaxy is that a certain 10 Marks L2 CO1 amount of elastic strain can be accommodated by any material without generating dislocations or defects. Explain the strained epitaxial heterostructure in detail.

 $\mathbf{0r}$

- A quantum well is a region that confines electrons in a small 10 Marks L2 CO1 region of space. Illustrate this concept using any heterostructure semiconductor in detail.
- A wave is a periodic oscillation that transmits energy through 10 Marks L2 CO2 space. Light is a transverse, electromagnetic wave that can be seen by the typical human. Explain the properties and parameters of a light wave in detail.

 $\mathbf{0r}$

Derive and explain the equation in quantum mechanics which 10 Marks L2 CO2 allows us to find the wave function for a given situation and describe its time-independent equation.