Roll No.				
----------	--	--	--	--

School of Engineering

Mid - Term Examinations - November 2024

		Miu - 101 m Examinations - November 2	404 4			
Se	Semester: III Da		Date : 06-11-2	ate: 06-11-2024		
Со	Course Code: PET2009 Time: 11:45ar		n to 01:	15pm		
Со	urse	Name: Thermodynamics of Reservoir Fluids	Max Marks: 5	0		
Pr	Program: B. Tech V		Weightage: 25%			
	(i)	ructions: Read all questions carefully and answer accordingly.) Do not write anything on the question paper other than roll numl	ber.			
		Part A				
An	iswer	ALL the Questions. Each question carries 2 marks.	Ę	5Qx2M	=10M	
1	Def	fine Reversible process and Irreversible process.	2 Marks	L1	C01	
2	Def	fine thermodynamics system and list the types of system.	2 Marks	L1	C01	
3	Def	fine Entropy.	2 Marks	L1	C01	
4	Lis	t the equation of Gibbs function and Helmholtz Function.	2 Marks	L1	CO2	
5	-	produce the expression of second law efficiency for engine and mp.	2 Marks	L1	CO2	
		Part B				
Ansv	ver AI	LL Questions. Each question carries 10 marks.	4QX1	0M=40	Μ	
6	the b	aws of thermodynamics are fundamental principles that govern ehaviour of energy and matter in physical systems. Explain in I about the Zeroth, First and Second law of thermodynamics.	10 Marks	L2	CO1	
		or				
7		proper explanation, explain the fact that the Internal energy is a t function.	10 Marks	L2	C01	
8	8a	The heat engine exemplifies the practical application of thermodynamic laws, converting heat into useful work, which i fundamental in power generation, internal combustion engines		L5	C01	

	and various industrial applications. Its operation hinges on the efficient management of energy transfer and entropy.				
		A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C. evaluate the heat rejection per kW net output of the engine.			
	8b	The refrigerator is a practical application of thermodynamic principles, playing a vital role in everyday life by using work to control heat flow and maintain lower temperatures in a confined space	5 Marks	L5	C01
		A domestic food freezer maintains a temperature of -15°C (minus 15). The ambient air temperature is 30°C. If heat leaks into the freezer at the continuous rate of 1075kJ/s. evaluate the least power necessary to pump this heat put continuously.			
		or			
9		tain process follows the relationship <i>PV</i> = constant. Interpret the ess and obtain the relationship for work.	10 Marks	L2	C01
	80°C temp	ton cylinder device initially contains 0.4m ³ of air at 100kPa and The air is now compressed to 0.1 m ³ in a such a way that the erature inside the cylinder remains constant. Determine the work during this process.			
10	temp refrig and - the n for th	versible heat engine operates between two reservoirs at beratures of 600°Cand 40°CThe engine drives a reversible gerator which operates between reservoirs at temperature of 40°C 20°C(minus 20). The heat transfer to the heat engine is 2000kJ and et work output of the combined engine refrigerator is 360kJ. Solve he heat transfer to the refrigerant and net heat transfer to the twoir at 40°C	10 Marks	L3	CO1
		or			
11	opera syste perfo envir cooli cooli opera refrig a net	refrigerating effect is a fundamental parameter in the design, ation, and optimization of refrigeration and air conditioning ms. It provides valuable information for assessing system ormance, ensuring energy efficiency, and addressing economic and conmental considerations. You have been assigned to estimate the ng effect of a combined heat engine and refrigerator so that overall ng can be done for the following situation. A reversible heat engine ates between 600°Cand 40°CThis engine derives a reversible gerator operating between 40°Cand -18°C(minus 18°G, still there is work output of 370KJ while the heat received by the engine is KJ. Estimate the cooling effect of the refrigerator.	10 Marks	L5	CO1

12 Demonstrate the steps of viscosity determination of Natural gas by 10 Marks L3 C01 Carl-Kobayashi-Burrows method at high temperature and normal pressure with expressions

10 Marks L5 CO1

13 Determination of various properties of gas is one of most important tasks for successful application of thermodynamic concepts. You have been assigned to a gas whose composition is known to you and you have been told to evaluate the apparent molecular weight, specific gravity of the gas.

Compound	yi	Mwi
C ₁	0.775	16.04
C ₂	0.083	30.07
C ₃	0.021	44.1
i-C ₄	0.006	58.12
n-C ₄	0.002	58.12
i-C ₅	0.003	72.15
n-C ₅	0.008	72.12
C ₆	0.001	86.18
C ₇₊	0.001	114.23
N ₂	0.05	28.02
CO ₂	0.03	44.01
H ₂ S	0.02	34.08