Roll No.

School of Engineering

Mid - Term Examinations - November 2024

Semester: 5 **Date**: 04/11/2024

Course Code: ECE3005 Time: 02.00pm to 03.30pm

Course Name: Analog Communication **Max Marks**: 50

Program: Electronics & Communication Engineering Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.				5QX2M=10M						
1	Outli	ne the classification of Analog Communication systems.	2 Marks	L1	CO1					
2		ne Amplitude Modulation Index. What is the value of modulation x for critical modulation condition?	2 Marks	L1	CO1					
3		e the two types of detectors used to demodulate Amplitude ulated signal.	2 Marks	L1	CO1					
4		the expression for Frequency Modulation by defining all the meter representations.	2 Marks	L1	CO2					
5	Diffe	rentiate between narrow band FM and wideband FM.	2 Marks	L1	CO2					
		Part B								
Ansv	ver A	LL Questions. Each question carries 10 marks.	4QX10M=40M							
6	a.	Discuss in detail the elements of communication system with the help of a neat diagram block diagram.	8 Marks	L2	CO1					
	b.	List any two applications of AM.	2 Marks	L2	CO1					
0r										
7	a.	The communication is more efficient if modulated before transmission. Justify this statement of need of communication system.	8 Marks	L2	CO1					

	b.	Draw neat waveforms of Amplitude modulated signal.	2 Marks	L2	CO1					
8		Frequency modulation (FM) can be categorized into Narrowband FM (NBFM) and Wideband FM (WBFM), depending on the modulation index and bandwidth requirements. Explain the key differences in the generation of NBFM and WBFM using direct and indirect method with neat diagram	10 Marks	L3	CO2					
or										
9	a.	Calculate the permissible range in maximum modulation index for i)Commercial FM which as 30 Hz to 15 kHz modulating frequency	6 Marks	L2	CO2					
		ii) NBFM System which allows maximum deviation of 10kHz for 100Hz to 3kHz modulating frequencies.								
	b.	Draw neat waveforms of Frequency modulated signal	4 Marks	L2	CO2					
10		Show that in an envelope detector circuit the demodulation is to follow the envelop of m(t), it is required that at any time	10 Marks	L3	CO1					
		$\frac{1}{RC} \ge \frac{\mu \omega m sin \omega mt}{1 + \mu cos \omega mt}$								
0r										
11	a.	Discuss the generation of DSBSC waves using balanced modulator with the help of a neat diagram.	4 Marks	L2	CO1					
	b.	Explain SSBSC demodulation using Coherent detector	6 Marks	L2	CO1					
12	a.	What is meant by the terms, angle modulation and frequency deviation? Give the mathematical relationship for same.	4Marks	L2	CO2					
	b.	Compare in detail Amplitude modulation and frequency modulation.	6 Marks	L2	CO2					
0r										
13		Derive the expression for Single tone frequency modulation. Also highlight on frequency modulation index.	10Marks	L3	CO2					