

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 1

Even Semester: 2018-19

Date: 06 March 2019

Course Code: CSE 307

Time: 1 Hour

Course Name: Data Mining

Max Marks: 40

Programme & Sem: B.Tech (DE) & VI Sem

Weightage: 20%

Instructions:

(i) Answer all questions sequentially

(ii) Scientific calculators are allowed

Part A

Answer all the Questions. Each question carries three marks.

(5Qx3M=15)

- Define the predictive and descriptive tasks of data mining. Also list the various tasks under each one of them.
- 2. Illustrate the various data mining steps involved in KDD with a neat diagram.
- 3. Differentiate noise and outliers with a suitable example for each.
- 4. Define equal width binning. Write the bin intervals used to discretize the following temperature values into 7 bins, using equal width binning. 70,71,64,65,72,72,68,69,75,85,75,80, 83,81.
- 5. Write any two advantages of data warehouses.

Part B

Answer both the Questions. Each question carries seven and half marks. (2Qx7.5M=15)

6. The confusion matrix of a certain classifier that is trained to distinguish between positive and negative text statements is given below. Define and find each one of the following metrics namely, accuracy, error rate, TPR, FPR, TNR, FNR and Precision of this classifier.

	PREDICTED CLASS					
ACTUAL		. +	-			
CLASS	+	100	5			
	-	10	50			

7. Define the measures of node impurity namely, Gini index and classification error. Find the Gini Index and classification error of a subset with the class distribution given below.

Sports	20
Weather	40

Part C

Answer the Question. Question carries ten marks.

(1Qx10M=10)

8. A decision tree based classification model is to be trained using the following data set to predict the factors affecting sunburn. Using multi-way split on the attributes, gain and entropy as the measure of node impurity, find the root node of the tree. Clearly show the detailed working with the gain of each candidate splitting attribute. **Draw the decision tree after the first iteration**.

Name	Hair	Height	Weight	Lotion	Sunburned
Sarah	Blonde	Average	Light	No	Yes
Dana	Blonde	Tall	Average	Yes	No
Alex	Brown	Short	Average	Yes	No
Annie	Blonde	Short	Average	. No	Yes
Emily	Red	Average	Heavy	No	Yes
Pete	Brown	Tall	Heavy	No	No
John	Brown	Average	Heavy	No	No
Katie	Blonde	Short	Light	Yes	No

Roll No.				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Even Semester: 2018-19

Date: 16 April 2019

Course Code: CSE 307

Time: 1 Hour

Course Name: Data Mining

Max Marks: 40

Program & Sem: B.Tech & VI Sem (DE)

Weightage: 20%

Instructions:

(i) Read the questions carefully and (ii) State the assumptions, if any.

Part A

Answer all the Questions. Each question carries five marks.

(3Qx5M=15)

1. Consider the two students S1 and S2, and their marks in two subjects "Data Mining" and "Compiler Design" are given below:

S1=(90, 60) AND S2=(85, 70)

- a) Compute Manhattan Distance between S1 and S2
- b) Compute Euclidean Distance between S1 and S2
- c) Compute Supremum Distance between S1 and S2
- d) State the difference between Simple Matching Coefficient and Jaccard proximity measure
- 2. Consider the following Hostel related dataset **DS** and compute the proximity between the instances H1 and H3 as per the proximity measure used during the discussion in the class room.

Note: Assume that the attribute "Hostel Facility" is nominal attribute and "Hostel Rating" is ordinal attribute.

Hostel Facility	Hostel Rating
GOOD	1
BAD	3
MODERATE	2
	GOOD

- 3. a) Name at least two approaches for utilizing binary classifier for the multi class problem.
 - b) Consider classes and its equivalent code word and classify the test instance *T1* with the code word " 1 0 1 1 1 1 1" using Hamming Distance Measure.

Class	Code Word
Class1	1111111
Class2	1100111
Class3	1110001

Part B

Answer **both** the Questions.

(2Q=15Marks)

4. Consider the following dataset "*DS_AdaBoost*" and Sample data set "*Sample_DS*" for AdaBoost Algorithm with one iteration. (8 Marks)

DS AdaBoost

Х	0.2	0.4	0.6	8.0	1
Υ	1	-1	1	-1	-1
Sample_DS					
			Sam	ple_D	S
X	0.2	0.2	Sam 0.6	ple_D 0.8	S 1

- i. Calculate error rate
- ii. Calculate confidence factor
- iii. State the importance of updating weight in the AdaBoost as compared to bagging approach.
- 5. Consider the following plant dataset DS1 and apply K-NN Classifier with K=2 and classify the instance *Test=* (100, 200, ?) (i.e. if plant length=100 and plant width=200, find the plant type attribute value). (7 Marks)

Note: Euclidean Measure will be used as a proximity measure

Instance No.	Plant length	Plant Width	Plant type
1	100	150	Type1
2	110	140	Type1
3	130	200	Type2
4	110	205	Type2

Part C

Answer the Question. The Question carries ten marks.

(1Qx10M=10)

6. Consider the following training Dataset D.

Screen size	Туре	Company	Purchase?
A	С	А	Yes
С	А	С	Yes
Α	Α	С	No
В	С	Α	No
С	С	В	No

Apply Naïve Bayes Classifier and classify the test record with the following values "A, C, B, ?".

Page 3 of 3

Roll No				
---------	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU SCHOOL OF ENGINEERING

SUMMER TERM / MAKE UP ENDTERM EXAMINATION

Semester: Summer Term 2019

Date: 24 July 2019

Course Code: CSE 307

Time: 2 Hours

Max Marks: 80

Course Name: Data Mining and Warehouse

Program: B.Tech (CSE) & VI Sem (2015 Batch)

Weightage: 40%

Instructions:

- (i) Answer all the questions and state the assumptions if any
- (ii) Scientific calculators are allowed

Part A

Answer **all** the Questions with suitable answer from the given options. **Each** question carries **1** mark. (20Qx1M=20M)

1.

- i. The earliest step in the data mining process is usually?
- A. Visualization B. Modelling C. Preprocessing D. Deployment
- ii. Which of the following operations can be performed on nominal attributes?
- A. Distinctness B. Order C. Addition D. Multiplication
- iii. Friendship structure of users in a social networking site can be considered as an example of:
- A. Record data B. Ordered data C. Graph data D. None of these
- iv. Leaf nodes of a decision tree correspond to:
- A. Attributes B. classes C. Data instances D. None of these
- v. Which of the following applied on warehouses?
- A. Write only B. Read only C. Both A & B D. None of these
- vi. Which of the following statement is NOT true about clustering?
- A. It is a supervised learning technique
- B. It is an unsupervised learning technique
- C. It is also known as exploratory data analysis
- D. It groups data into homogeneous groups

vii	is a subject-oriented,	integrated,	time-variant,	nonvolatile	collection	of data
in support of ma	nagement decisions.					

A. Data mining B. Data warehousing C. Web mining D. Text mining

viii. Apriori algorithm is otherwise called as _____.

A. Width wise algorithm B. Level wise algorithm C. Pincer search D. FP growth

		ng method is B. Min-Max					
B. R) numbers atings (1 to alendar Dat	5) es	- N - F	Ordinal Iominal Ratio nterval			(4Qx1M=4M)
		sC. Query D .		ormatio	n		
xii. K-mean	s is not dete	erministic an	d it also co	onsist of	numbe	er of iteration	s. True or false?
A. To expla	in some obs	is the goal o served event expected rel	or conditi	ion.		confirm that correate a new	data exists. data warehouse.
A. Defined	distance me	ing is require etric uster centroi	•	eans clu	B. Nur	? nber of clust of these	ers
		non property Positive defi				nequality	D. Dissimilarity
A. DistanceB. Distance	between the between the between the	e closest pa e furthest pa	ir of points iir of point	s betweens betwe	en the c		
xvii. How do A. Support(a	A∪B) / Supp	` '	ce(A -> B)?		• • • •	/ Support (B) / Support (B)
			Part B	3			
2. Why clu		ns. Each que on is require				ks. ent measure	(3Qx12M=36M) s of cluster
	er the follow fied game.	ing data set	which des	scribes t	the wea	ther condition	n for playing some
·	Outlook	Temp	Humidity	Win	idy	Play	
	sunny	hot	High	false	e	no	
	sunny	hot	High	true	!	no	
	overcast	hot	High	false	е	yes	
	rainy	mild	High	false	e	yes	
	rainy	cool	normal	false	e	ves	

rainy

overcast

cool

cool

normal

normal

true

true

no

yes

Apply Naïve Bayes classifier and classify the following test record.

Outlook	Temp	Humidity	Windy	Play
Sunny	cool	High	true	?

4. For the following given transaction data set, generate frequent item sets using Apriori algorithm by considering support=22%.

Transaction ID	1	2	3	4	5	6	7	8	9
Items purchased	11,12,15	I2,I4	12,13	I1,I2,I4	I1,I3	12,13	I1,I3	11,12,13,15	I1,I2,I3

Part C

Answer the Questions. Each question carries twenty four marks.

(1Qx24M=24M)

5. Consider the data set given below and apply agglomerative clustering using Single Linkage. Draw the Dendogram for the same.

Item	А	В	С	D	E	F
Α	0					
В	0.71	0				
С	5.66	4.95	0			
D	3.61	2.92	2.24	0		
Е	4.24	3.54	1.41	1.00	0	
F	3.20	2.50	2.50	0.50	1.12	0