Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

School of Computer Science & Engineering Mid - Term Examinations - November 2024

Semester: VII	Date : 05-11-2024
Course Code: CSE3010	Time: 02.00pm to 03.30pm
Course Name: Deep Learning Techniques	Max Marks: 50
Program: B.Tech. (Computer Science & Engineering)	Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Ans	wer ALL the Questions. Each question carries 2marks.	5Qx2M=10M			
1	State true or false. Deep Learning is so named because it has no hidden layers.	2 Marks	L1	C01	
2	Name any 1 technique of automatic hyperparameter tuning.	2 Marks	L1	C01	
3	Name any activation function which is used for multi-class classification.	2 Marks	L1	CO2	
4	Name the activation function which takes a number as input and returns a probability as the output.	2 Marks	L1	CO2	
5	State the range for the tanh activation function	2 Marks	L1	CO2	

Part B

Ansv	ver AL	L Questions. Each question carries 10 marks.	4QX10M=40M		
	6a.	Expand CNN	1 Marks	L1	C01
	6b.	State true or false. Gradient descent is a method of measuring loss in multiclass classification.	1 Marks	L1	C01
6	6c.	Consider the multi-layer feed forward neural network with inputs x_1 , x_2 , and x_3 . The network has 3 hidden layer neurons, h_1 , h_2 , and h_3 , with weight vectors $W_{h1} = [0.5, -0.5, 0.5]$, $W_{h2} = [0.75, 0.25, -0.5]$, and $W_{h3} = [0.25, 0.5, 0.75]$, and bias for the first hidden layer is 0.5 and bias for output layer is 0.10. Assume that	8 Marks	L3	C01

the neurons have a Tanh Activation Function at the output layer, and a ReLU activation function at the hidden layer. Predict the value of the output of the neural network. Also, calculate the Mean Absolute Error if the actual value is 0.5.

0r

7	7a. 7b. 7c.	Expand RNN. State true or false. CNNs are good for applications like Computer Vision and Image Processing. Consider the multi-layer feed forward neural network with inputs x_1 , x_2 , and x_3 . The network has 3 hidden layer neurons, h_1 , h_2 , and h_3 , with weight vectors $W_{h1} = [0.5, -0.5, 0.5]$, $W_{h2} = [0.75, 0.25, -0.5]$, and $W_{h3} = [0.25, 0.5, 0.75]$, and bias for the first hidden layer is 0.5 and bias for output layer is 0.10. Assume that the neurons have a Sigmoid Activation Function at the output layer, and a ReLU activation function at the hidden layer. Predict the value of the output of the neural network. Also, calculate the Mean Squared Error if the actual value is 0.75.	1 Marks 1 Marks 8 Marks	L1 L1 L3	C01 C01 C01
	8a.	Name the problem caused by the ReLU activation function which creates <i>dead neurons</i> that will never get activated.	2 Marks	L1	C01
0	8b.	Recall the sigmoid activation function and calculate its	3 Marks	L2	C01
8	8c.	derivative. Given the loss function $L(a,b,c) = a^*(b+2c)$. Calculate the gradients of the loss function L with each of the inputs a, b, and c, when a = 3, b = 1, and c = 2.	5 Marks	L2	C01
		Or			
	9a.	Write down the range of the Leaky ReLU activation function.	2 Marks	L1	C01
9	9b. 9c.	Recall the tanh activation function and calculate its derivative. Given the loss function $L(a,b,c) = a^*(b+2c)$. Calculate the gradients of the loss function L with each of the inputs a, b, and c, when a = 3, b = 1, and c = 2.	3 Marks 5 Marks	L2 L2	C01 C01
	10a.		2 Marks	L1	CO2
	10b.	gradient descent algorithm will execute. Consider a feedforward neural network with 2 Boolean inputs, X_1 and X_2 and a single output, Y. Let it have weights $W_1 = m$ and $W_2 = n$, and a bias $b = 0$. Given that m and n are positive, and the neuron fires if the value of $Z \ge 0$, which Boolean function is represented by the network. Prove it using a truth table.	4 Marks	L2	CO2
10	10c.	Consider the following python code:	4 Marks	L3	CO2
		<pre>import keras from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(12, input_dim=XXX, activation='relu')) model.add(Dense(10, activation='relu))</pre>			

model.add(Dense(10, activation='softmax'))
print(model.summary())

Compute the value of **XXX** so that the number of trainable parameters is 340. Assume a non-zero bias (i.e. every neuron takes a bias term as well).

0r

	11a.	Name a technique for automatic parameter tuning if the number of hyperparameters are small (Eg. less than 3).	2 Marks	L1	CO2
	11b.	Consider a feedforward neural network with 2 Boolean inputs, X ₁ and X ₂ and a single output, Y. Let it have weights W ₁ = m and W ₂ = n, and a bias b = 0. Given that m and n are positive, and the neuron fires if the value of $\mathbf{Z} > 0$, which Boolean function is represented by the network. Prove it using a truth table.	4 Marks	L2	CO2
	11c.	Consider the following python code:	5 Marks	L3	CO2
11		<pre>import keras from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(9, activation='relu)) model.add(Dense(1, activation='softmax')) print(model.summary())</pre>			
		As we can see, the model takes an 8 dimension input to the Input layer, which is connected to a Dense layer of 9 neurons, which is connected to an output layer with a sigmoid activation function. Compute the number of trainable parameters in the system. Assume a non-zero bias (i.e. every neuron takes a bias term as well).			
	12a.	Write down the formula of the Exponential Linear Unit (ELU).	1 Marks	L1	C02
		Let $f(x)$ be the ELU of x. Let $f'(x)$ be the derivative of $f(x)$ with respect to x. Prove that $f'(x) = 1$ if $x > 0$ and $f'(x) = f(x) + a$, if x is less than 0, where a is the parametric constant used in calculating the ELU.		L2	C02
12	12c.	Consider a multilayer perceptron which has an input layer, 3 hidden layers and an output layer with a single neuron. The input layer has 4 neurons, the first hidden layer has 3 neurons, the second hidden layer has 4 neurons, and the third hidden layer also has 3 neurons. The activation functions for the hidden layers are all ReLU and the activation function for the output layer is the sigmoid activation function. The weight matrices are as follows:	8 Marks	L3	CO2

• W1 (bias is the rightmost column):

2	0	_1		1		1
4	0			1		1
0	1	1		0		1
1	-1	0		0		0
• W2 (bias is the rig	htmost	colun	nn):		
0	-1		2		1	
-1	1		0		2	
0	1		1		1	
-1	0		0		3	
• W3 (bias is the rig	htmost	colun	nn):		
0	-1	-1		2		5
-1	1	1		0		2
-1	0	1		0		3
Output Lave	r Wojahta – [1 1 1	lando	utout low	or l	ning = 2

Output Layer Weights = [-1, 1, 1] and output layer bias = -2 Predict the output, given that the input X = [2,1,2,1]

0r

- **13a.** Define Regularization.
- **13b.** A grid search has to select the best values for 3 hyperparameters, H_1 , H_2 , and H_3 , where H_1 has V_1 values, H_2 has V_2 values, and H_3 has V_3 values. Compute the number of iterations that grid search has to run.
- **13c.** Consider a multilayer perceptron which has an input layer, 3 hidden layers and an output layer with a single neuron. The input layer has 4 neurons, the first hidden layer has 3 neurons, the second hidden layer has 4 neurons, and the third hidden layer also has 3 neurons. The activation functions for the hidden layers are all ReLU and the activation function for the output layer is the sigmoid activation function. The weight matrices are as follows:
- 13
- W1 (bias is the rightmost column):

2	0	-1	1	1		
0	1	1	0	1		
1	-1	0	0	0		
• W2 (bias is the rightmost column):						

• W2 (blas is the rightmost column).						
0	-1	2	1			
-1	1	0	2			
0	1	1	1			
-1	0	0	3			

• W3 (bias is the rightmost column):

0	-1	-1	2	5
-1	1	1	0	2
-1	0	1	0	3
0 · · · I	TAT 1 1	4 4 4 7 1	1	

Output Layer Weights = [-1, 1, 1] and output layer bias = -2 Predict the output, given that the input X = [-1,1,1,2]

- 1 Marks L1 CO2
- 1 Marks L2 CO2
- 8 Marks L3 CO2