Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

BENGALURU

School of Computer Science and Engineering Mid - Term Examinations - November 2024

Semester: V **Date**: 04-11-2024

Course Code: CSE3016 Time: 09.30am to 11.00am

Course Name: Neural Network and Fuzzy Logic Max Marks: 50

Program: B.TECH (CSG) Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Ans	wer ALL the Questions. Each question carries 2marks.	5Qx2M=10M			
1	Tell any four non-linear activation function.	2 Marks	L1	CO1	
2	Draw single layer recurrent neural network.	2 Marks	L1	CO1	
3	Define Hebb's law.	2 Marks	L1	CO1	
4	What are the limitations of multi-layer perceptron compare to single perceptron?	2 Marks	L1	CO2	
5	State competitive learning.	2 Marks	L1	CO2	

Part B

Answer ALL Questions. Each question carries 10 marks.

4QX10M=40M

Consider a neural network having two layers namely input and 10 Marks L3 CO1 output. The input layer contains two inputs nodes and bias. The output layer holds one output unit. It also contains two normal weights. Construct a neural network model to calculate $y=x_1'x_2'$ logic using delta rule.

 $\mathbf{0r}$

7 a. Consider a neural network having two layers namely input and 6 Marks L3 CO1 output. The input layer contains two inputs nodes. The output layer holds one output unit. It also contains two normal weights.

		Construct a neural network model to compute $y=x_1'x_2$ logic using McCulloch and Pitts model.			
	b.	Explain in detail about least mean square rule.	4 Marks	L2	CO1
8		Consider a neural network having two layers namely input and output. The input layer contains two inputs nodes and one bias node. The output layer holds one output unit. It also contains two normal weights. Construct a neural network model to compute $y=x_1+x_2$ logic using perceptron rule.	10 Marks	L3	CO1
		or			
9	a.	Distinguish between ANN and BNN.	4 Marks	L2	CO1
	b.	Prove that differentiation of $tanh(x)=1-tanh^2(x)$	6 Marks	L3	CO1
10		Validate that ΔW_{ji} = $\eta \delta_j o_i$ with respect to hidden layer and ΔW_{kj} = $\eta \delta_k o_j$ with respect to output layer using back-propagation algorithm.	10 Marks	L3	CO2
		or			
11		Consider a multi-layer perceptron which contains three layers namely input, hidden and output. The input layer contains two nodes and bias node. The hidden layer also contains two nodes and bias node. The output layer contains one node. The activation function used in hidden and output layers are binary step activation function. Build a model to compute a logic $y=x_1^2-x_2^2+1$ using above scenario.	10 Marks	L3	CO2
12		Consider a radial basis neural network which contains three layers namely input, hidden and output. The input layer contains two nodes. The hidden layer also contains four nodes. The output layer contains one node. The activation function used in hidden and output layers are gaussian activation function. Develop a model to compute a logic AND using above scenario.	10 Marks	L3	CO2
		or			
13	a.	Compare competitive learning with perceptron learning.	4 Marks	L2	CO2
	b.	Consider a Kohonen neural network having two layers namely input and output. The input layer contains three inputs nodes. The	6 Marks	L3	CO2

output layer holds two output unit. It also contains six normal weights namely W_{11} =0.6, W_{12} =0.5, W_{13} =0.1, W_{21} =0.8, W_{22} =0.4, and W_{23} =0.7. How clustering is molded using Kohonen self-organizing model. When X_1 =[1, 1, 0], X_2 =[1, 0, 0], X_3 =[1, 1, 1], X_4 =[0, 1, 1], X_5 =[1, 0, 1], X_5 =1, 0, 1]