Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

<u>School of Computer Science and Engineering</u> Mid - Term Examinations - November 2024

Semester: V Course Code: CSE3071 Course Name: Computer Vision Program:BTech Date: 04/11/2024 Time: 02.00pm to 03.30pm Max Marks: 50 Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.			5Qx2M=10M			
1	Define Computer vision.	2 Marks	L1	CO1		
2	List out the applications of computer vision.	2 Marks	L1	CO1		
3	Identify major steps involved in image digitization.	2 Marks	L1	C01		
4	List out the difference between image enhancement and image denoising.	2 Marks	L1	CO2		
5	Name the command used for reading an image and displaying an image matrix.	2 Marks	L1	CO2		

Part B

Ansv	wer Al	LL Questions. Each question carries 10 marks.	4QX10M=40M			
6	6a.	Explain sampling and quantization with an neat diagram?	5 Marks	L2	CO1	
	6b.	Discuss digital image filters with an example.	5 Marks	L2	CO1	

0r

7 7a. Describe the process of resizing an image and its importance in 5 Marks L2 CO1 applications.

- **7b.** Explain spatial domain filtering and give an example of where it's **5 Marks L2 CO1** used
- 8 8a. Explain image restoration and its importance in medical imaging. 5 Marks L2 CO1
 8b. Explain how the Sobel operator works in edge detection and 5 Marks L2 CO1 describe the purpose of its horizontal and vertical kernels.

0r

- **9 9a.** Describe image sharpening using laplacian mask derive the mask **5 Marks L2 CO1** using first order and second order derivative.
 - **9b.** Discuss a scenario where you would prefer using the Canny edge **5 Marks L2 CO1** detector over the Sobel or Prewitt operators. Justify your choice based on the characteristics of the algorithm.
- 10Apply Laplacian filter 1st order and second order derivative on
given image scan line and draw the graph to interpret the edges.10MarksL3C02

Scan → X line

0r

11		 Apply split and merge segmentation on Given 4x4 grayscale image matrix with intensity values ranging from 0 to 255: 100 102 105 107 101 104 106 109 150 152 155 157 151 153 158 160 Assume that the criterion for splitting and merging is based on the intensity range within each region: If the intensity range within a region exceeds 10, the region should be split. If adjacent regions have a difference in mean intensity of 5 or less, they should be merged. 	10Marks	L3	CO2
12	12a.	Explain histogram equalization and its steps in detail.	4 Marks	L3	CO2
	12b.	Perform histogram equalization mapping Consider the following 3x3 grayscale image matrix: 0 2 2 3 3 4 4 5 6 1. Calculate the histogram of this image and its CDF. 2. Map each intensity value to a new level through histogram	6 Marks	L3	CO2

equalization so that the intensity levels spread uniformly across the available range.

3. Form the new equalized 3x3 matrix.

0r

13Histogram Equalization for Uniform Distribution10 MarksL3C02For the following 4x3 grayscale image matrix with pixel values
from 0 to 3:for MarksL3C02

- 0 1 2
- 1 1 2
- 2 3 3
- 3 2 3

Compute the histogram of the image and the cumulative distribution.

- 1. Equalize the histogram so that the new intensity values have a uniform distribution.
- 2. Update the pixel values to create the equalized matrix.
- 3. Verify that the final histogram has approximately equal frequencies for each intensity level.