Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

School of Computer Science and Engineering Mid - Term Examinations - November 2024

Semester: 05 Course Code: CSE3078 Course Name: Cryptography and Network Security Program: B.Tech Date: 05/11/2024 Time: 02.00pm to 03.30pm Max Marks: 50 Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.(ii) Do not write anything on the question paper other than roll number.

Part A

Ans	wer ALL the Questions. Each question carries 2marks.	5Q2	X2M=1	0M
1	List out the ingredients of symmetric encryption.	2 Marks	L1	C01
2	What is meant by Denial-of-Service attack? Is it Active attack or Passive attack?	2 Marks	L1	C01
3	Compare substitution cipher and transposition cipher in cryptography.	2 Marks	L1	CO1
4	List the parameters (block size, key size, and no. of rounds) for the three AES versions.	2 Marks	L1	CO2
5	S-Boxes inputs are $s1\{010010\}$ & $s2\{000010\}$ using DES. Find the outputs.	2 Marks	L1	CO2

שורה	מס׳ עמודה															
me	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	S ₁															
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	3	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	13	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
								S	2							
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

Part B

Answ	ver ALL Questions. Each question carries 10 marks.	4QX10M=40M				
6	Compute the corresponding ciphertext for the word "SUNDAY" using 17 17 5 21 18 21 the Hill cipher with the key 2 2 19 or	10 Marks	L2	C01		
7	Construct a Playfair matrix with the key "NETWORK SECURITY". Make a reasonable assumption about how to treat redundant letters in the key.	10 Marks	L2	C01		
	Encrypt this message: "I only regret that I have but one life to give for my country".					
8	a. Using the Vigenère cipher, encrypt the word "explanation" using the key "leg".	5 Marks	L2	C01		
	b. Encrypt the given message "MEETING POSTPONED TOMORROW EVENING FIVE PM" using Railfence transposition technique. Depth=4.	5 Marks	L2	CO1		
	or					
9	Determine the inverse mod 26 of 17 17 5 21 18 21 2 2 19	10 Marks	L2	C01		

a. Show the original contents of State, displayed as a 4 * 4 matrix.

b. Show the value of State after initial AddRoundKey.

c. Show the value of State after SubBytes.

Table 5.2 AES S-Boxes																	
										y							
		0	1	2	3	4	5	6	7	8	9	Α	в	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C 0
	2	B 7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1 A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D 1	00	ED	20	FC	B 1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A 8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B 6	DA	21	10	FF	F3	D2
^	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B 8	14	DE	5E	0B	DB
	Α	E0	32	3A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	в	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1 D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	$0\mathbf{D}$	BF	E6	42	68	41	99	2D	0F	B 0	54	BB	16
								(a) S-be)X							

d. Show the value of State after ShiftRows.

or

11

10 Marks L2 CO2

Illustrate the structure of DES encryption algorithm and specify the operation of single round process in detail.

- 12 Compute the first byte output of the Mix-Columns transformation for 10 Marks L2 CO2 the following sequence of input bytes "F2 4C E7 8C" using the key matrix.
 - $\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix}$

or

- **13** State Chinese Remainder theorem and compute the value of X for the **10 Marks L2 CO2** given set of congruent equations using CRT. Justify the given equation by applying X value.
 - $X \equiv 1 \pmod{5}$ $X \equiv 2 \pmod{7}$ $X \equiv 3 \pmod{9}$ $X \equiv 4 \pmod{11}$