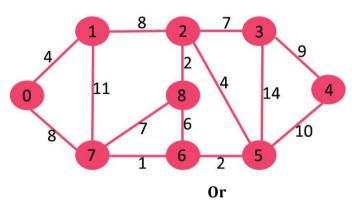
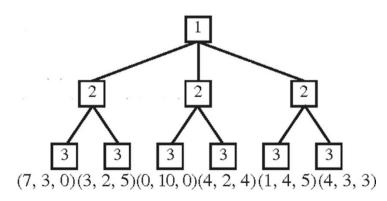
Roll No.				
----------	--	--	--	--

<u>School of Computer Science & Engineering</u> Mid - Term Examinations - November 2024

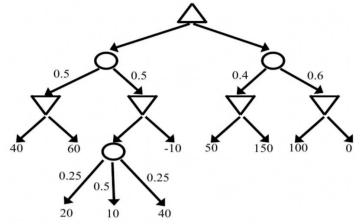
Semester: 5	Date: 04/11/2024
Course Code: CSE3208	Time : 02:00pm – 03:30pm
Course Name: Artificial Intelligence in Practice	Max Marks: 50
Program: B.Tech. Computer Science and Engineering (AI& ML) (CAI)	Weightage: 25%

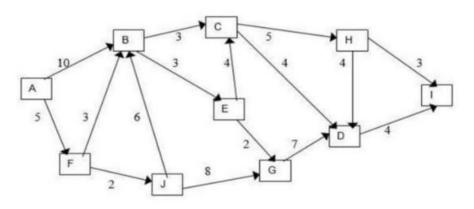

Instructions:

- 1. Read all questions carefully and answer accordingly.
- 2. Do not write anything on the question paper other than roll number.
- 3. Write Part A questions on the very first page of your answer script.


Part A

Ansv	Answer ALL the Questions. Each question carries 2 marks.			x2M=1	.0M
1		the recurrence for finding out the time complexity of ideal ordering ha-beta pruning.	2 Marks	L1	C01
2		the algorithm which is used for finding out the expected utility there are multiple players in a zero-sum game.	2 Marks	L1	C01
3	Name senter	the term that describes the meaning inferred from the logical nce.	2 Marks	L1	C01
4		any 2 properties which we use to measure the performance of ormed search algorithms, OTHER than time and space complexity.	2 Marks	L1	C01
5	5 Write down the Conjunctive Normal Form of the statement: P -> Q.			L1	CO1
		Part B			
Ansv	wer AL	L Questions. Each question carries 10 marks.	4QX1	0M=4()M
6	6a.	Name the 2 inference rules which are applicable in First Order Logic, but not Propositional Logic because of the Existential Quantifier.	2 Marks	L1	CO2
	6b.	Explain why the straight-line distance between 2 points on a map is ALWAYS an admissible heuristic.	3 Marks	L2	CO3


	6c.	We have discussed the solution of the 4-Queens Problem in class. Now solve the 5-Queens Problem!	5 Marks	L3	CO3
		Or			
7	7a.	Name the 2 inference rules which are applicable in First Order Logic, but not Propositional Logic because of the Universal Quantifier.	2 Marks	L1	CO2
	7b.	Explain why we use BFS for solving the water-jug problem, instead of DFS.	3 Marks	L2	CO3
	7c.	Consider that you have a 2 litre jug and a 3 litre jug. Demonstrate how you would measure out 4 litres of water.	5 Marks	L3	CO3
8	8a.	Explain why the straight-line distance between 2 points on a map is ALWAYS admissible.	3 Marks	L2	CO3
	8b.	Consider a map with 6 regions (R1, R2, R3, R4, R5, and R6). We have to colour the regions using at most 4 colours (C1, C2, C3, and C4). Explain the variables and the domains of each variable. Your answer should be ideally no longer than 2 sentences.	3 Marks	L2	CO3
	8c.	Perform Dijkstra's Single Source Shortest Path from the node 0 (leftmost node) to every other node in the given graph.	4 Marks	L3	CO3


99a. Compute the value that player 1 can expect, assuming that his
opponents – Players 2 and 3 – play optimally.3L2CO3Marks

9b. Compute the value of the root node. Here, upper-facing triangles 3 L2 are maximizing nodes, lower-facing triangles are minimizing Marks nodes, and circles are chance nodes.

9c.Use Dijkstra's SSSP Algorithm to find the shortest distances from
the node A to every other node:L3CO3Marks

10	10a.	For any 3 predicates $P(x,y,z)$, $Q(x,y,z)$, and $R(x,y,z)$ write down the Conjunctive Normal Form of: $P(x,y,z)$ AND ($Q(x,y,z)$ OR $R(x,y,z)$)	1 Marks	L1	CO2
	10b.	Consider the predicate:teacher(x) = "x is a teacher"		L2	CO2
		Convert the sentence "Sam is a teacher" to First Order Logic.			
	10c.	Consider the following situation:	8 Marks	L3	CO2
		• Every child sees some witch.			
		• No witch has both a black cat and a pointed hat.			
-		• Every witch is good or bad.			
		• Every child who sees any good witch gets candy.			
		• Every witch that is bad has a black cat			
		Classify each of the following terms as either a constant, predicate,			

Classify each of the following terms as either a constant, predicate, function or variable. If it is a function / predicate, describe it. (Eg. rat(x) = x is a rat.)

CO3

(a) child, (b) sees, (c) witch, (d) black-cat, (e) pointed-hat, (f) good, (g) bad, (h) candy

0r

11	11a.	For any 3 predicates P(x,y,z), Q(x,y,z), and R(x,y,z) write down the Disjunctive Normal Form of: P(x,y,z) OR (Q(x,y,z) AND R(x,y,z)).	1 Marks	L1	CO2
	11b.	Consider the predicate:	1	L2	CO2
		 teacher(x) = "x is a teacher" 	Marks		
		Convert the sentence "Sam is a teacher" to Conjunctive Normal Form.			
	11c.	Consider the following situation:	8	L3	CO2
		Anyone who can read is not stupid	Marks		
		• Anyone who is not poor and is not stupid is also happy			
		• John can read and is not poor			
		Happy people have exciting lives			
		People having exciting lives get chocolates			
		• John gets chocolates.			
		Classify each of the following terms as either a constant, predicate, function or variable. If it is a function / predicate, describe it. (Eg. $rat(x) = x$ is a rat.)			
		(a) read, (b) stupid, (c) poor, (d) happy, (e) has, (f) exciting-life, (g) John, (h) gets-chocolates			
12	12a.	Consider a situation where we have a map of 3 regions, A, B and C, where A borders B and C, B borders A and C, and C borders A and B. However, we have only 2 colours (lets say RED and GREEN). It is therefore obvious that the map cannot be coloured. However, prove that the constraint graph for this problem is arc-consistent .	4 Marks	L2	CO3
	12b.	God Fuhrer King Sam the Wise, the Blessed Emperor of the Badshah Empire had 7 sons, named Adam (A), Benjamin (B), Caleb (C), Daniel (D), Ephraim (E), Frank (F) and Gideon (G). As he was nearing the end of his life, he called his cartographer (a.k.a. map- maker) Praddy the Prudent to divide the 7 regions of his Empire among his children. However, to prevent his sons from fighting each other, he had constraint - the territories of 2 brothers should share a border only if they are friends. The following table lists the brothers and their friends:	4 Marks	L3	CO3

Son	Friends	No. of Friends
Frank	B, C, E, G	4
Benjamin	A, C, F	3

Ephraim	A, D, F	3
Adam	B, E	2
Caleb	B, F	2
Daniel	E	1
Gideon	F	1

Praddy the Prudent decides to colour the regions of the Badshah Empire using 3 colours - **GREEN**, **YELLOW**, and **PURPLE** - in that order. To select the region, he first uses the **LRV** heuristic. In case of ties, he uses the **Maximum Degree Heuristic**. If ties still persist, he would use select the region **alphabetical order** (i.e. Adam will be chosen before Caleb). Predict the colours which would be assigned to each of the 7 sons and complete the below table:

Son	Friends
Adam	
Benjamin	
Caleb	
Daniel	
Ephraim	
Frank	
Gideon	

12c.State true or false. The cryptarithmetic problem A – B = C (where
A, B, and C are strings) will always have no solution if A is equal to
B.2L1CO3Marks

0r

13	13a.	If the statement in 12.c is true, prove it. If the statement is false, then explain why it is so.	4 Marks	L2	CO3
	13b.	Solve the cryptarithmetic puzzle SATURN + URANUS = PLANETS . Then find out the number which is encoded as STELLAR .	4 Marks	L3	CO3
	13 c .	State the domains of each variable in a cryptarithmetic puzzle in Base B (where B is a number).	2 Marks	L1	CO3