|--|

BENGALURU

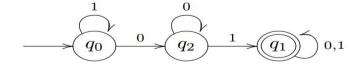
School of Computer Science and Engineering & Information Science Mid - Term Examinations - November 2024

Semester: V **Date**: 06-11-2024

Course Code: CSE2018 Time: 09.30am to 11.00am

Course Name: Theory of Computation Max Marks: 50

Program: B. Tech Weightage: 25%

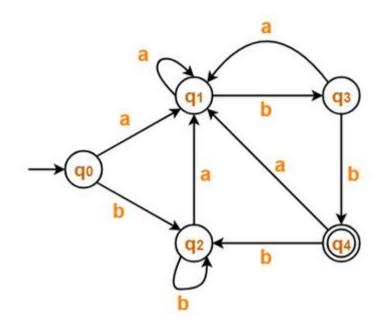

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

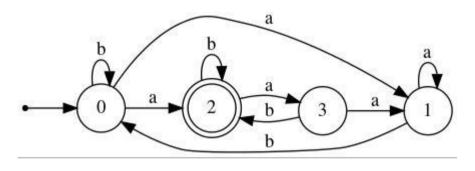
Answer ALL the Questions. Each question carries 2marks.			5Qx2M=10M		
1	Define Finite Automata with an example.	2 Marks	L1	CO1	
2	Define Grammar with an example.	2 Marks	L1	CO1	
3	List any 4 applications of Finite Automata.	2 Marks	L1	CO1	
4	Find Epsilon closure of states q0, q1 and q2.	2 Marks	L3	CO2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

5 Construct the transition table for the following automata 2 Marks L3 CO2



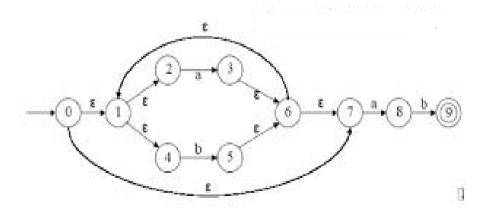
Part B

Answer ALL Questions. Each question carries 10 marks.					4QX10M=40M		
6		Let L1= $\{a, ab, ba\}$ and L2= $\{b, aa\}$, Find the following operations.	10	L3	CO1		
		1. Concatenation of L1L2.	Marks				
		2. L2 ²					
		3. L2*					
		4. L2+					
		5. L1 ^R					
		or					
	7a.	Explain in detail about	4	L2	CO1		
		1. Pushdown Automata and its applications.	Marks				
7		2. Turing Machines and its applications.					
	7b.	Discuss about operations on languages with examples.	6 Marks	L2	CO1		
8	8a.	Construct DFA to accept the language contains even number of $0^{\rm s}$ and	5	L3	CO2		
		even number of 1 ^s .	Marks				
	8b.	Construct NFA to accept the strings with a's and b's such that the string end with 'aa'.	5 Marks	L3	CO2		
		or					
9	9a.	Construct NFA for a language L, which accept all the strings in which the third symbol from the right end is always a over the alphabet {a, b}.	5 Marks	L3	CO2		
	9b.	Construct a DFA which accepts set of all binary strings divisible by 3.	5 Marks	L3	CO2		
10	10a.	Construct the NFA for the following Regular expression $(0+1)^*$ $(00+11)$	5 Marks	L3	CO2		
	10b.	Construct the NFA for the following Regular expression bc(ab+c)*	5 Marks	L3	CO2		


11 Find the Minimization of the following DFA

10 L3 CO2 Marks

12 Convert the given NFA into DFA using subset construction method.


10 L3 CO2 Marks

or

13 Convert the given NFA into DFA using subset construction method.

10 L3 CO2 Marks

