Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

School of Computer Science and Engineering Mid - Term Examinations - November 2024

Semester: III **Date**: 07/11/2024

Course Code: CSE3155 Time: 02.00pm to 03.30pm

Course Name: Data Communications and Computer Networks Max Marks: 50

Program: B.Tech CSE and Allied Weightage: 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

communications.

(ii) Do not write anything on the question paper other than roll number.

		Part A					
Ansv	ver A	LL the Questions. Each question carries 2marks.	5Qx2M=10M				
1		Define network topology and list two common types of topology?	2 Marks	L1	CO1		
2		List two responsibilities of the physical layer in the OSI model.	2 Marks	L1	CO1		
3		Define flow control and recall its significance in data transmission.	2 Marks	L1	CO1		
4		Illustrate two sub-layers of the Data Link Layer and their functions.	2 Marks	L2	CO2		
5		List the protocols of data link layer used for noisy channels.	2 Marks	L2	CO2		
		Part B					
Answ	ver A	LL Questions. Each question carries 10 marks.	4QX10M=40M				
6	a.	Identify the OSI model layers with diagram and list their functions.	5 Marks	L3	CO1		
	b.	List the four fundamental characteristics of data	3 Marks	L1	CO1		

	c.	Explain the role of each component in the communication process.	2 Marks	L2	CO1
		0r			
7	a.	Identify the TCP/IP model layers with diagram and list their functions.	5 Marks	L3	CO1
	b.	What is the definition of bandwidth, and what is its unit?	2 Marks	L1	CO1
	c.	Explain the difference between simplex, half-duplex, and full-duplex modes of data flow in computer networks, and provide an example of each.	3 Marks	L2	CO1
8	a.	State the Various Types of Unguided Media in Wireless Communication.	3 Marks	L1	CO1
	b.	Define the basic structure of an optical fiber.	2 Marks	L1	CO1
	c.	The power of a signal is 20 mW and the power of the noise	5 Marks	L3	CO1
		is 2 $\mu W.$ Compute the values of SNR and SNR $_{dB}.$			
		0r			
9	a.	State the Various Types of guided Media in wired Communication.	2 Marks	L1	CO1
	b.	Define spread spectrum and explain its importance in	3 Marks	L1	CO1
		communication systems. Classify the types of spread			
		spectrum techniques.			
	c.	Consider a noiseless channel with a bandwidth of 4000 Hz transmitting a signal with four signal levels. Compute the	5 Marks	L3	CO1
		maximum bit rate?			
10	a.	Define minimum Hamming distance with an example.	2 Marks	L1	CO2
	b.	Explain the CSMA/CA process with a flowchart, detailing the steps involved in channel sensing, collision avoidance, and data transmission in a wireless network.	5 Marks	L2	CO2
	c.	Illustrate the basic working principle of TDMA.	3 Marks	L2	CO2
		0r			
11	a.	How does a controlled access protocol work? Explain one	3 marks	L1	C02

		type of controlled access protocol.			
	b.	Explain the need for CSMA (Carrier Sense Multiple Access)	5 Marks	L2	CO2
		in network communication and describe the three CSMA			
		persistent methods. What are the advantages and			
		disadvantages of each method?			
	c.	Interpret the basic working principle of stop and wait	2 Marks	L2	CO2
		protocol.			
12		A bit stream 10110011 is transmitted using the CRC	10 Marks	L3	CO2
		method with the generator polynomial x4+x+1.			
		1 Commute the codeward to be transmitted			
		1. Compute the codeword to be transmitted.			
		2. If the third bit from the left changes during			
		transmission, explain how the receiver can identify			
		this error.			
		0r			
13		Compute and predict, if there are any transmission errors in the received data using CRC.	10 Marks	L3	CO2
		i) A receiver receives the data sequence 100111001. The generator polynomial used is x^3+x^2+1 .			
		ii) A receiver receives the data sequence 100100001. The generator polynomial used is x^3+x^2+1 .			