*
A 1000
Control of the same
union appeals
100
10-49/30-20/20-20/19 A
The second of th
DARK HOUSE KINDVILLED EN
こうきょうこうしょう けいかん こうさいごう
A THEOLOGY DEPOSITS NO HOUSE.
and the first territory and a second of the second of the second

-	·				The description of the Contract	
55 15 N. F			İ		P. C.	1
KOH INO.						1 1
			į			

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST -1

	-		
Sem & AY: Odd Sem. 2	019-20		Date: 27.09.2019
Course Code: CHE101			Time: 9:30AM to 10:30AM
Course Name: Enginee	ring Chemistry		Max Marks: 30
Program & Sem: 8 Tec	h.(Chemistry Cycle)	&	Weightage: 15%
(ii) Question paper co	Properly and answer accountsists of 3 parts. -programmable calculato	V -	
	Part A (Memory Re	call Questions)	
t. Choose the correct a		(00	k. (50x11/1=5//) D.NO.1) [Knowledge]
a. Covalent bond	b. lonic bond	c. Metallic bond	d. Coordinate bond
The force present in a	all polar molecules is		
a. dispersion force	b. Dipole-dipole for	ce c. vander waal to	rce
d. nydrogen bondin	<u> </u>		
III. Atomic number of an	element refers to		
a. number of proton	\$	b. number of neutro	ons
c. number of valenc	y electrons	d. number of electr	ons
iv. Color code used to r	epresent Oxygen in b	all and stick molecula	ar model?
a. Black	b. White	c. Red	d. Blue
v. The tool developed b	y the cheminformatic	s company is	

a. ChemDraw b. ChemWindow c. ChemSketch d. ChemMine tool

b. State True or False for the following statements

(5Qx1M=5M)

- a. Hydrogen bonding is present in HF, but not in NH3
- b. Space-filling molecular model gives the best sense of the relative sizes of the atoms and how they merge together in bonding.
- c. The octet rule refers to the tendency of atoms to prefer to have Nine electrons in the valence shell.
- d. In electrostatic potential maps, electron rich region is represented by red colour and electron deficient region is given blue color.
- e. Electrons are considered as particles in quantum mechanical model.

Part B (Thought Provoking Questions)

Answer both the Questions. Each Question carries five marks. (2Qx5M=10M)

CO-1 and 2 [Comprehension]

c. The following MSDS label was found for a chemical. Discuss what the colours and numbers represents for safety measures.

d. in a polymer industry, when two polymers were being processed one of the polymers was found to become soft on heating and hard on cooling, and other polymers become permanently hard and rigid on continuous heating. What is the reason? What are these polymers referred to as? Give an example for each.

Part C (Problem solving Questions)

Answer the Question. The Question carries ten marks.

(10x10N=10N)

(C.O.NO.-2) [Application]

- 5. A sample of Polymethyl methacrylate polymer was found to have, 30% monomers with molecular mass 28, 30% with molecular mass 42 and rest with molecular mass 50.
 - a. Calculate the number average molecular weight, weight average molecular weight and polydispersivity index of the polymer.
 - b. A polymer is found to have molecular weight 88200. If the molecular weight of a monomer is 42, Find out the degree of polymerization.

SCHOOL OF ENGINEERING

Semester i

Course Code: CHE101

Course Name: Engineering Chemistry

Date: Engineering Chemistry

Time: 9:30am -10:30am

Max Marks: 30

Weightage: 15%

Extract of question distribution (outcome wise & level wise)

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Mar	iteaj	prov [Ma	rks ai	oht g type fotted] Levels	TOACOGE I AMERICANI MINISTERIO	blem S type trks all A	Total Marks
E.	*	Module 1	1x5	To the state of th					:	5
2	- Participant	Module 1	1x5					The state of the s		5
3	1,2	Module 1 & 2			ő					5
4.	1,2	Module 1 & 2			5				· · · · · · · · · · · · · · · · · · ·	 5
5	2	Module 2			***************************************	To company to the same of the		10		10
	Totai Marks		10		10			10		30

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I here certify that All the questions are set as per the above lines Dr Shashikala A R]

Amexure-II: Format of Answer Scheme

SCHOOL OF ENGINEERING

Semesteri

Date: Engineering Chemistry

Time: 9:30am -10:30am

Wax Marks: 30

Weightage: 15%

Course Code: Chillian

Course Name: Engineering Chemistry

PartA

 $(Q \times M = Marks)$

QNo	Solution	Scheme of Marking	Max. Time required for each Question
17 70%	i. a ii. b iii. a iv. c v. a	one mark for each correct answer	iOmias
2	a. False b. True c. False d. True e. False	one mark for each correct answer	i Omins

Part 8

 $(Q \times M = Marks)$

Q No		Scheme of Marking	Max. Time
	Solution		required for
			each Question
3	Blue-health-4-very short exposure	1.5	10mins
	cause death or serious injury		
	severe health risk	1.5	
	Red-Flammability-4-will vaporize		
	and burn readily at normal		
	temperature.		
	Yellow-Stability-1-normally stable		
	cab become unstable at higher		
	temperatures.		
	White-W- avoid water	1	
4.	Thermoplastics become soft on	naming thermoplastics and thermosetting	10mins
	heating and Thermosetting	polymers-2 marks	1 Utilities
	polymers become permanently hard	forhing thanks	
	and rigid on heating		
The same of the same of the same of the same			

	In thermoplastics, polymers chains	reason 2 marks	
and the same of th	are held together with weak vander		
The second secon	waal forces, but in thermosetting		
- Pro-	polymers, polymer chains are held		
	with covalent bonds which is		
	difficult to break.	•	
	Examples: thermoplastics-PE, PVC		
	Thermosetting-Bakelite, UFresin	one example for each 0.5 x2=1	

Part C

 $(Q \times M = Marks)$

QÑo	Solution	Scheme of Marking	Max. Time required for each Question
52.	$ \frac{N_{T_1}}{N_1} = \frac{N1M1 + N2M2 + N3M3}{N1 + N2 + N3} $ $ \frac{N1M1^2 + N2M2^2 + N3M3^2 + \dots N1M1^2}{N1M1 + N2M2 + N3M3 + \dots N1M1} $	Formula -3 marks	25 mins
AND THE STREET, TH	PDI=Mw/Mn average Mn=41g/mol average Mw=43.03g/mol PDI=1.04965	Calculation of Mn (substitution and simplification)=2 Calculation of Mw (substitution and simplification)=2 Calculation of PDI-1 mark	
5b.	DP=Molecular weight of a polymer molecular weight of a monomer DP=88200/42 =2100	formula 0.5 mark substitution 1 mark and calculation 0.5 marks	5 mins

Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem. 2019-20	Date: 16.11.2019
Course Code: CHE 101	Time: 9:30 AM to10:30 AM
Course Name: ENGINEERING CHEMISTRY	Max Marks: 30

Program & Sem: B.Tech (Chemistry Cycle) & I Weightage: 15%

Instructions:

I. Read the question properly and answer accordingly.

II. Question paper consists of 3 parts.

b) CNG

III. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions.	Each sub Questi	on carries one mark	(10Qx1M=10M)
1. Choose the correct ar	swer.	(C.O.N	IO.2&3) [Knowledge]
(i) Mhigh of the fall	marina in a feetle file		

(i)	Which of the following is a fully fluoring	ated polymer?
	a) Neoprene	c) Thiokol
	b) Teflon	d) PVC
(ii)	Stereoregular polymers are	
	a) Isotactic, syndiotactic, atactic	c) Natural and synthetic
	b) Addition and condensation	d) Elastomers, plastics and fibres
(iii)	Which one is the example of conduct	ting polymer?
	a) Thiophene	c) Polythene
	b) Neoprene	d) Thiokol
(iv)	is primary l	pattery from the following.
	a) Dry cell	c) Ni-MH ₂ battery
	b) Ni-Cd battery	d) Li-ion battery
(v)	An example of primary fuel is	400 CO (100 CO) TO
` ,		
	a) Wood	c) LPG

d) Petrol

2. State True or False for the following:

(C.O.NO.2&3) [Knowledge]

- (i) Liquid crystals are anisotropic.
- (ii) The addition of plasticizers in the virgin plastic is to improve flexibility and toughness.
- (iii) Tg value can decide whether a polymer at the use temperature will behave like rubber or plastic.
- (iv) Conducting polymers should have conjugation in their structure.
- (v) In Li-MnO₂ battery, electrolyte must be dissolved in aqueous solutions.

Part B [Thought Provoking Questions]

Answer both the Questions, Each Question carries five marks.

(2Qx5M=10M)

3. Explain construction, working and applications of Leclanche cell.

(C.O.NO.3) [Comprehension]

4. How are the properties of virgin plastic modified. Explain it with suitable examples. (C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries ten marks.

(1Qx10M=10M)

5. On burning 1.83 g of a solid fuel in a bomb calorimeter, the temperature of 3500 g of water increased from 35.5°C to 39.2°C. Water equivalent to the calorimeter is 395 g and latent heat of steam is 587cal/g. Calculate the gross and net calorific values of the fuel if % of hydrogen in fuel is 0.7. Specific heat of water is 1cal/g°C. (C.O.NO.3) [Application]

SCHOOL OF ENGINEERING

Semester: 1st

Course Code: CHE101

Course Name: Engineering Chemistry

Date: 16.10.2019

Time: 9:30-10:30 AM

Max Marks: 30

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Mai		ecall lotted] _evels	prove [Marl		type otted]	A STATE OF THE STA	lem So type rks allo		Total Marks
		·	K		С		A		5			
1	2 & 3	2 and 3	5									
2	2 & 3	2 and 3	5									5
3	3	3				5						5
4	2	2		<u> </u>		5						5
5	3	3		-					10			10
6												
7												
	Total Marks		10			10			10			30

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 1st

Course Code: CHE101

odisc code. Chic for

Course Name: Engineering Chemistry

Date: 16.10.2019

Time: 9:30-10:30 AM

Max Marks: 30

Weightage: 15%

Part A

 $(10Q \times 1M = 10 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1. (i)	b) Teflon	1 M	5 min
(ii)	a) Isotactic, syndiotactic, atactic	1 M	
(iii)	a) Thiophene	1 M	
(iv)	a) Dry cell	1 M	
(v)	a) Wood	1 M	
2. (i)	True	1 M	5 min
(ii)	True	1 M	
(iii)	True	1 M	
(iv)	True	1 M	
(v)	False	1 M	

Part B

 $(2Q \times 5M = 10 \text{ Marks})$

Q No		Scheme of Marking	Max. Time required for each Question
3.	Dry Cell: This cell, also known as Leclanche cell (Zinc-Carbon dry cell)	Diagram- 2M Reactions-3M	6 min.

The cell reactions are:

At the anode: $Zn \rightarrow Zn^{2+} + 2\epsilon^{-}$

At the cathode: MnO_2 + H2O + 2e $^-\!\to\! Mn_2O_3$ + 2OH $^-$

The overall cell reaction: $Zn+2MnO_2+H_2O\rightarrow Zn^{2+}+Mn_2O_3+OH^-$

4.

The polymer is combined with a range of additives to modify the properties to the specific application.

The process of mechanical mixing of the virgin plastic with various additives (without chemical reaction) is known as compounding of plastics.

1. Fillers - To impart special properties such as heat resistance, strength fillers are added into the polymer

matrix etc.

Eg: Mica, Clay, Titanium dioxide, wood flour or

2. **Plasticizers** – These are added to improve flexibility and toughness.

Eg: Pthalates and Adipates

3. Accelerators – These are added to fasten the vulcanization

process.

Eg: Thiourea, Carbamate, Mercaptobezothiazole.

4. Stabilizers – These are added to improve the resistance to

heat, UV light, general weathering and oxidation. Eg: Tin, Lead

5. Coloring agents - Coloring agents are used in plastics to

give various colors.

Eg: Dyes and pigments

6 min.

Definition- 2M Additives with example- 3M

6 min.

	Language and the second	

Part C

 $(1Q \times 10 M = 10 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5.	GCV = $\frac{(W+w)(T_2 - T_1)}{x}.S$ GCV = $(3500+395)(39.2-35.5)1/1.83$ = 7875.1 cal/g NCV = HCV - $(0.09X\% \text{ of H2 X Latent of steam})$ = $7875.1 - (.09 \times 0.7 \times 587)$ = 7838.1 cal/g	Formulas- 2 marks each Substitution- 2 marks each Calculation and correct answer- 3 marks each	15 min.

		Roll No												
--	--	---------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

ster. Odd Cerricoter. 2010 - 20

Course Name: ENGINEERING CHEMISTRY

Program & Sem: B.Tech (Chemistry Cycle) & I

Date: 28 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 100

Weightage : 50%

Instructions	į	
--------------	---	--

Course Code: CHE 101

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Non-programmable calculators are permitted

Part A [Memory Recall Questions]

Answ	er all the Questions.	[Knowledge]
1.	Fill in the blanks. Answer all questions	[10QX1M=10M]
	(a)is an example for reserve batteries.	(C.O.No.1)
	(b) Ais a combined material formed by the assembly	y of two or more
	components, such as fillers or reinforcing agents and a compatible	e matrix binder.
		(C.O.No.2)
	(c) Reactions in which chemical changes occur on the passage of an	electrical current is
	calledprocess	(C.O.No.3)
	(d)liquid crystals depend on both temperature and concentre	ration of the solvent
		(C.O.No.2)
	(e) The polymer which becomes soft on heating and hard on cooling is	S
		(C.O.No.2)
	(f)state of matter will have weak intermolecular forces at room te	mperature.
		(C.O.No.1)
	(g) When two atoms approach each other, the electrons of one atom	are attracted to the
	nucleus of the other according to	(C.O.No.1)
	(h) The bond between two Nitrogen atoms is a	(C.O.No.1)
	(i)enables to visualize the charge distributions of mol	lecules and charge
	related properties of molecules	(C.O.No.1)
	(j) is one of the types of reaction that takes place during cat	talytic reforming
		(C.O.No.3)

2. Answer all questions.

[10QX2M=20M]

(a) Define priming and suggest one preventive measure ((C.O.No.4)
---	------------

(b) Mention any two factors that affect the rate of corrosion (C.O.No.4)

(c) Define Osmosis and reverse osmosis (C.O.No.4)

(d) Give the type of hardness caused by the presence of CaSO₄, CaCl₂, Mg(HCO₃)₂ and NaCl in water (C.O.No.4)

(e) Define electroless plating (C.O.NO.4)

(f) Define desalination. (C.O.NO.4)

(g) Monomers A and B undergo condensation to give Nylon-6,6 Mention the names of A and B (C.O.No.2)

(h) when Zn and Cu are in contact with each other in sulphuric acid medium, which metal corrodes and why? (C.O.No.4)

(i) On what, the levels of Dissolved oxygen (DO) depend. Suggest the name of method that is commonly used to determine DO. (C.O.No.4)

(j) Give one example each for waterline and pitting corrosion (C.O.No.4)

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 8 marks.

(5Qx8M=40M)

3. Identify and discuss about, the intermolecular forces present in (a) H₂ molecule (b) H₂O (c) Acetone (d) NaCl dissolved in water.

(C.O.No.1) [Comprehension]

4. Monomers A and B undergo condensation to give a linear chain polymer (C) which on heating in presence of a base D forms Bakelite. Mention the names of A, B, C, D. Write the step wise reaction involved in the formation of Bakelite.

(C.O.No.2) [Comprehension]

5. The nickel –metal hydride battery uses hydrogen, adsorbed in a metal alloy. This metal alloy is capable of undergoing a reversible hydrogen adsorbing-desorbing reaction as the battery is charged and discharged. Explain its construction and cell reactions

(C.O.No.3) [Comprehension]

- 6. (a) What is electroplating? (b)Mention its purpose. (c) Describe the electroplating of Chromium (C.O.No.4) [Comprehension]
- 7. (a) Which are the various reasons that cause boiler corrosion? (b) Explain with reactions and respective measures to avoid/prevent the boiler corrosion.

(C.O.No.4) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

8. Calculate the Total hardness, Temporary Hardness and Permanent Hardness of a water sample containing: Ca(HCO₃)₂ = 60 ppm, Mg(HCO₃)₂ = 120 ppm, CaSO₄= 150 ppm, MgSO₄ = 55 ppm, MgCl₂ = 35 ppm. Express the hardness in degree Clarke and degree french. Atomic Weights: Ca:40, Mg: 24, H: 1, C: 12, O:16, S: 32, Cl: 35.5, N: 14)

(C.O.No.4) [Application]

9. (a) On burning 0.83 kg of a solid fuel in a bomb calorimeter, the temperature of 3500 kg of water increased from 25.5 ℃ to 29.2 ℃. Water equipment of calorimeter is 385 kg and latent heat of steam is 2457 KJ/kg. Specific heat of water is 4.187KJ/Kg/°C. Calculate the gross and net calorific value of fuel, if % of hydrogen in fuel is 0.7%.

[8 M]

(b) Justify why Gross calorific value is greater than the Net calorific value.

[2 M]

(C.O.No.3) [Application]

10. Analysis of a sample of polypropylene shows that there are five different chains of different molecular weights, calculate the Number-average molecular weight, Weight-average molecular weight, Polydispersity Index and the degree of polymerization (weight average molecular weight). The molecular weight of propylene is 42.

Molecular Weight	No. of
(g/mol)	Molecules
120	150
200	200
240	250
260	250
320	300

[4+4+1+1=10M]

(C.O.No.2) [Application]

SCHOOL OF Engineering

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels	Thought provoking type [Marks allotted] Bloom's Levels	Problem Solving type [Marks allotted]	Total Marks
1	CO1-20	Module 1	2			
	CO2-30	Module 2	3			10
	CO3-30	Module 3	3			10
	CO4-20	Module 4	2			
2	CO1-20	Module 1	2	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	CO2-30	Module 2	3			20
	CO3-30	Module 3	3			20
	CO4-20	Module 4	2			
3	CO1	Module 1		8		8
4	CO2	Module 2		8		8
5	CO3	Module 3		8		8
6	CO4	Module 4		8		8
7	CO4	Module 4		8	- V-02-80002	8
8	CO4	Module 4			10	10
9	CO3	Module 3			10	10
10	CO2	Module 2			10	10
	Total Marks	3	30	40	30	100

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: Odd Semester: 2019 - 20

Date:

28.12.2019

Course Code: CHE 101

Time:

3 HRS

Course Name: Engineering Chemistry

Max Marks: 100

Program & Sem: B.Tech 1st Sem

Weightage: 50%

Part A

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	 (a) Zn-AgO Battery (b) Composite (c) Voltaic (d) Lyotropic (e) Strength per unit weight (f) Gases (g) Coulomb's law (h) Covalent bond (i) Electrostatic Potential maps 	1 mark each for the each right option	I min each
2	 (i) Hydrogenation (a) The passage of water particles mixed with steam from the boiler is called PRIMING. Can be avoided by Fitting mechanical steam purifiers Avoided rapid change in steaming rate Maintaining low water levels in the boilers Use softened and filtered water in the boiler (b) Lesser the pH higher is the corrosion rate and lesser the Hydrogen over potential lesser is the corrosion rate (c) When two solutions of unequal concentrations are separated by a semi-permeable membrane, the flow of the solvent takes place from dilute to concentrated side. This is called OSMOSIS. If a hydrostatic pressure is applied on the concentrated side then the flow is reversed. This is called REVERSE OSMOSIS. (d) CaSO₄: Permanent CaCl₂: Permanent Mg(HCO₃)₂: temporary and NaCl: no hardness (e) Electroless plating is a method of depositing a noble metal (from its salt solution) on a catalytically active surface of a less noble metal by employing a suitable reducing agent without using electrical energy. The electroless plating takes place only on the catalytically active surface. The reducing agent brings about the reduction of the metal ions to the metal which plated over a catalytic surface. Therefore, electroless plating is also termed as autocatalytic plating. 	2 marks each for right answer	3 min each

	(f)	Sugar cannot crystallize in hard water; presence of	
		hardwater can increase the calcium content in cement	
		thereby reducing soundness and imparting cracks	
	(g)	A: Hexamethylene diammine B: Adipic acid	
	(h)	Zn corrodes first as Zn has low reduction potential compared to Cu	
	(i)	Dissolved oxygen (DO) levels in environmental water	
		depend on the physiochemical and biochemical activities in water body and it is an important useful in pollution and	
i		waste treatment process control.	
		The iodometric method which is a titration-based method	
		and depends on oxidizing property of DO	
	(j)	Waterline Corrosion: Ocean going ship - hulls of ships	
	-	which float for long periods in the sea water.	
		Pitting Corrosion: Cracks in metals which are not well	
		aerated.	

Part B

 $(5Q \times 8M = 40 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	(a) H ₂ molecule will have a Dispersion Force The one intermolecular force present between all molecules and atoms is the dispersion force (also called the London force). Dispersion forces are the result of fluctuations in the electron distribution within molecules or atoms. Since all atoms and molecules have electrons, they all exhibit dispersion forces.	Each 2 marks	10 min
	(b) H ₂ O will have a Hydrogen bonding Polar molecules containing hydrogen atoms bonded directly to small electronegative atoms most importantly fluorine, oxygen, or nitrogen—exhibit an intermolecular force called hydrogen bonding. HF, NH ₃ , and H ₂ O, for example, all exhibit hydrogen bonding.		
	(c) Acetone possess a Dipole–Dipole Force The dipole–dipole force exists between all molecules that are polar. Polar molecules have electron-rich regions (which have a partial negative charge) and electron-deficient regions (which have a partial positive charge).		
	(d) NaCl has a Ion–Dipole Force The ion–dipole force occurs when an ionic compound is mixed with a polar compound; it is especially important in aqueous solutions of ionic compounds.		

4	A: Phenol B: Formaldehyde C: Novolac D: Hexamethylene tetrammine OH CH2OH CH2OH OH CH2OH CH2OH OH OH CH2OH OH	1 mark each for mentioning the names 1 mark each for each step 1 and 2 of reaction 2 marks for step 3	10
5	Charge Construction: 3 marks Each reaction: 1 mark Applications 1 mark Emf 1 mark	10 min	
	The process is reversed during charge. The open circuit potential of the cell ranges from 1.25-1.35V.		
6	 Electroplating is a process of depositing a superior metal over an inferior metal by means of electrolysis using suitable electrolyte in an aqueous solution. Principle of Electroplating: The electroplating device essentially an electrolytic cell, in which two electrodes, anode and cathode are dipped in an electrolyte solution. 	2+6	10 min

	Сотронения	Hard Chromium	Decorative Chromium		
	Anode	Lead with up to 7% Sn or Sb	Lead with up to 7% Sn or Sh		
	Cathode	Article to be plated	Article to be plated		
	Bath composition	H ₂ CrO ₄ (250–300 g /l) and H ₂ SO ₄ (2.5–3.0 g/l)	H ₂ CrO ₄ (250–300 g/l) and H ₂ SO ₄ (2.5–3.0 g/l)		
	Current density (mA/cm ²)	290–580	150-430		
	Temperature (°C)	45–60	45–60		
	Current efficiency (%)	17-20	10–15		
	Applications	Extensively used in industrial and engineering applications, such as hydraulic cylinder rods, rollers, piston rings, mold surfaces, thread guides, gun bores, etc.	Provides durable and good finish on automobiles, surgical instruments, etc.		
	****				12
7	> Boiler Cor	rrosion		3 + 3 + 2 marks	10 min
		ecay of boiler materi cal attack by its environ	•		
	Main reasons	sare			
	❖ Dissolved	O_2			
	❖ Dissolved				
		n dissolved salts			
	> Boiler Cor	rosion			
	Dissolved	O_2			
		contains about 8mL com temperature.	of dissolved Oxygen		
THE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	temperature, a	Oxygen in water in attacks the boiler materia	al.		
	2 Fe +2	2 H ₂ O +O ₂ 2]	Fe(OH) ₂		
	2 Fe(OH) ₂ + O ₂	$(e_2O_3 + 2 H_2O)$		
	> Boiler Co	rrosion			
	❖ Removal o	of dissolved O ₂			
		calculated amount of Sodium Sulphide	of Sodium Sulphite or		
	2 1	Na ₂ SO ₃ + O ₂	➤ 2 Na ₂ SO ₄		
		$N_2H_4 + O_2$	➤ N ₂ + 2H ₂ O		
		Na ₂ S + 2O ₂	➤ 2 Na ₂ SO ₄		

> Boiler Corrosion	
❖ Dissolved CO ₂	
Water with carbon dioxide forms carbonic acid which has a slow corrosive effect on the boiler material.	
CO ₂ is also released into the boiler if the water for steam generation contains HCO ₃ -	
$CO_2 + H_2O \longrightarrow H_2CO_3$	
$Mg(HCO_3)_2 \xrightarrow{Heat} MgCO_3 + H_2O + CO_2$	
- Boiler Corrosion	
❖ Removal of dissolved CO₂	
By adding a calculated amount of ammonia 2NH₄OH +CO ₂ — (NH ₄) ₂ CO ₃ +H ₂ O	
Boiler Corrosion	
* Acids from dissolved salts	
Water containing dissolved magnesium salts liberate acids on hydrolysis	
The liberated acid reacts with iron producing HCl again and again	
Fe + 2 HCl \longrightarrow FeCl ₂ + H ₂	
FeCl ₂ + 2 H ₂ O → Fc(OH) ₂ + 2 HCl	

Part C

 $(3Q \times 10M = 30Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formula: 2 marks Temp Hardness 2 mark Perm. Hardness 2mark Total hardness in ppm 2 mark and total hardness in degree Clarke 1 marks total hardness in degree French 1 marks	20
9	Rise in temperature = $29.2-25.5$ °C = 3.7 °C Now, the gross calorific value can be calculated as:	1+1+2+2	20

	Gross calorific value = $\frac{(W+w)(T_2-T_1)}{S}$.		
	(3500+385)3.7X14.		
	Gross calorific value = $\frac{(W+w)(T_2-T_1)}{x}.S$ Substituting the values, we get $\frac{(3500+385)3.7X1}{0.83}$ 17318.67 cal/g		
	17516.07 Cally 4 5 13 13 13 13 13 13 13 13 13 13 13 13 13		
	NCV = GCV - 0.09H X 587 = 17318.67 - 0.09 X	4.5	358 M3) 146
	0.7 X 587 =17281.68 cal/g		
	a. Gross calorific value is greater than the Net calorific value		
	calornic value	2+2/	
	(i) Gross [Higher] calorific value: It is defined as "the		
	total amount of heat produced (liberated) when unit mass		
	OR volume of the fuel has been completely burnt and the		
	product of combustion have been cooled to room		
	temperature is called Gross [Higher] calorific value."		
	(ii) Net [Lower] calorific value: It is defined as "the net		
	heat produced when unit mass OR volume of the fuel is		
	completely burnt and the products are permitted to escape		
	is known as net calorific value."		
	L.C.V = H.C.V - Latent heat of water vapor formed		
	b. A good fuel should have a moderate ignition		
	temperature		
	The temperature of the fuel at which ignition starts and		
	continues to burn without further addition of heat is		
	called ignition temperature. It should be moderate for a		
	good fuel. Very low ignition temperature leads to fire hazard and very high ignition temperature disfavors the		
	starting of fire.		
10	$\overline{M_n} = \frac{N1M1 + N2M2 + N3M3 \dots NiMi}{N1 + N2 + N3 \dots Ni}$	4+4+1+1	20
	$N1 + N2 + N3 \dots Ni$		
	$\overline{Mn} = \sum NiMi / \sum Ni$	20 X 200 H (240 X	24401 (2440 1)
		MX WOLKERY	- (3 7-60 × 3-60
	$\overline{Mn} = 24261 \ g/mol$	1150	
	= 18000+	40,000 +640	en+GSCOOL
	$\overline{Mw} = 25871 \text{ g/mol}$	+9	6000
		1150	
		0-10 000/11	= 242160
		1150 219 000/1151	
	Molecular weight of the polymer (M)		
	Degree of polymerization (n) = $\frac{1}{M_{\text{acc}}}$ Molecular weight of monomer or		
	$PDI = \frac{MW}{Mn} = 1.066$ repeating unit (W)		
	IVI IL		

DP(n) = 616	
$\overline{Mw} = \frac{N1M1^2 + N2M2^2 + N3M3^2 + \dots NiMi^2}{N1M1 + N2M2 + N3M3 + \dots NiMi}$	
 Mw=∑NiMi² / ∑NiMi	

