

Roll No.								
	<u> </u>	<u> </u>	L	L				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem 2019-20

Date: 30.09.2019

Course Code: ECE 101

Time: 1.00 PM to 2.00 PM

Course Name: ELEMENTS OF ELECTRONICS ENGINEERING

Max Marks: 30

Program & Sem: B.Tech (Chemistry Cycle) & I

Weightage: 15%

Instructions:

(i) Read Questions carefully and answer accordingly

(ii) Scientific and Non- programmable calculators are permitted

(iii) This question paper contains two pages

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries one mark.

(10Qx1M=10M)

1. Choose the correct answer

(i-x)(C.O.NO.1) [Knowledge]

- i. While performing an experiment in Basic Electronics lab, two students got a resistor R_1 . If the value of R_1 is 16K Ω then determine colour bands of R_1
 - (a) R_1 : Brown Blue Orange
 - (b) R_1 : Brown Green Red
 - (c) R_1 : Black Brown Red
 - (d) Cannot be determined
- ii. Two resistors R1 of 20Ω and R2 of 40Ω are connected in parallel, the equivalent resistance of the circuit is:
 - (a) 13.33Ω
- (b) 133.3Ω

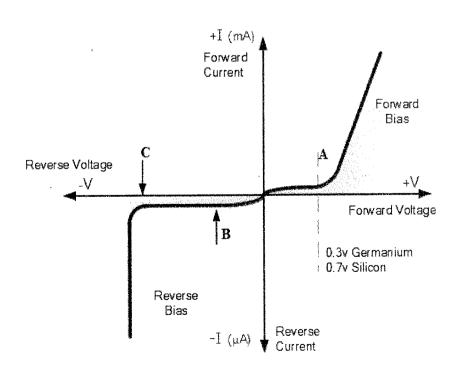
- (c) 1.33Ω
- (d) 18Ω

- iii. Name the law which relates voltage in a device with its current:
 - (a) Kirchoff's current law, $I_1 + I_2 I_3 = 0$
 - (b) Kirchoff's voltage law, $V V_1 V_2 = 0$
 - (c) Ohm's law, R=VI
 - (d) Ohm's law, V=IR
- iv. N-type semiconductor is formed by doping pure Silicon or Germanium with impurity atoms that are:
 - (a) Trivalent
- (b) Pentavalent
- (c) Both
- (d) None of these
- v. In P-type semiconductor material, majority charge carriers are:
 - (a) Electrons
- (b) Holes
- (c) Both Electrons and Holes
- (d) None of these

- vi. Conductors, semiconductors and insulators can be classified using Energy bands. At 0K, semiconductor behaves as:
 - (a) Conductor
 - (b) Insulator
 - (c) Semiconductor
 - (d) Metal
- vii. For an ideal PN junction diode, which of the following analogy is true:
 - (a) Forward Biased::R=0
- (b) Forward Biased::R→∞
- (c) Reverse Biased::R=0

- (d) None of these
- viii. In Shockley's Equation, the thermal voltage V_T is determined by:
 - (a) T/11,800
 - (b) T/kq
 - (c) T/11,600
 - (d) Cannot be determined
 - ix. RMS output voltage of full-wave rectifier is:
 - (a) $V_{rms} = V_m / \sqrt{2}$
- (b) $V_{rms} = V_m / \pi$
- (c) $V_{rms} = V_m/2$
- (d) None of these

- x. Ripple Factor of a full-wave rectifier is:
 - (a) 1.21
- (b) 1.414
- (c) 0.483
- (d) 0.982


Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries five marks.

(2Qx5M=10M)

(C.O.NO.1) [Comprehension]

2. The figure below represents PN junction diode characteristics. Refer the figure and answer the following question. Identify point A, B and C and define each of them. Differentiate between static resistance and dynamic resistance.

3. For the given circuit, Identify and state the laws to be used to determine the values of V1, V3 and I4. Determine the values of V1, V3 and I4.

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries five marks.

(2Qx5M=10M)

(Q4&Q5)(C.O.NO.1) [Comprehension]

- 4. Read the passage and answer the following question: Extrinsic semiconductor materials are made by adding impurity called Dopant. This process of adding impurity is called Doping. Extrinsic semiconductor are of two types: P-type and N-type. P-type and N-type joined together form a P-N junction. The working of PN junction has three stages: No Bias, Forward Bias and Reverse Bias condition.
 - i. Explain the working of P-N junction diode in forward bias condition with suitable diagram. [2M]
 - ii. In a circuit, if supply voltage is 5V and load resistance is 100Ω and there is a silicon diode, determine the D.C. Loadline points and plot it. [3M]
- 5. Read the passage and answer the following questions: Rectification is the process of converting A.C. components into D.C components. Rectifier is a device that converts A.C. voltage into pulsating D.C. voltage. Rectifiers can be classified into three types: Half-wave rectifier, Full-wave rectifier and Bridge rectifier.
 - i. Write short note on half-wave rectifier with suitable diagrams.

[3M]

ii. Derive an expression of V_{odc} for half-wave rectifier

[2M]

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

Even Semester: 2019-20

Date: 30 September 2019

Course Code: ECE 101

Time: 1 Hour

Course Name: Elements of Electronics Engineering

Max Marks: 30

Programme & Sem: Bjech & 1st semester (Chemistry cycle)

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	type [10 Marks		[10 Marks] [10Marks] Bloom's Levels Bloom's Levels		type ks]	Problem Solving type [10 Marks]			Total Marks [30]	
		Module - 1		K			Ç			С		
1-10	C.O.1	Module – 1 (10-Objective Type Questions)		10								10
1-2	C.O.1	Module – 1 (Subjective Type Questions)				5	5	,				10
1-2	C.O.1	Module – 1 (Subjective Type Questions)							5	5		10

Total	1	10	10		10	30	-
Marks							

K = Knowledge Level C = Comprehension Level, A = Application Leve

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Ms. Trisha]

Reviewers' Comments

(1) B. Tech (2) Q. Numbering should be seedone (3) Part C Q1- 5M but Scheme 6M (4) QP->Q2 Marks-> End (Folit).

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 1st

Date: 30-09-2019

Course Code: ECE 101

Time: 1:00 PM - 2:00 PM

Course Name: Elements of Electronic Engineering

Max Marks: 30 Marks

Weightage: 15%

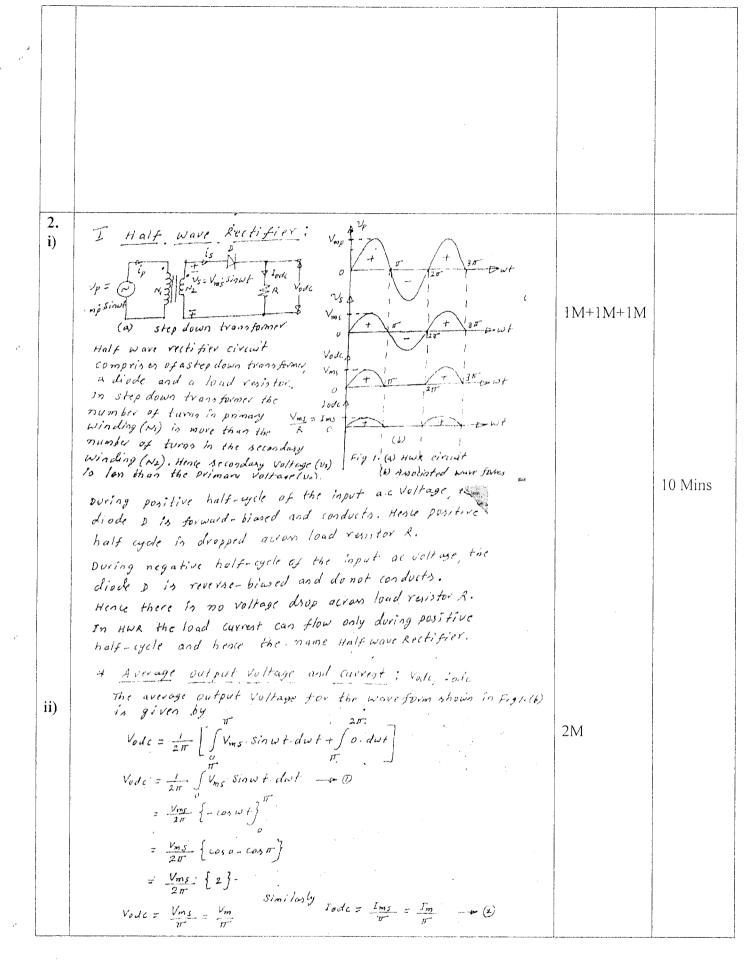
Part A

 $(10Q \times 1M = 10 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	(a) R ₁ : Brown Blue Orange	1 M	1 min
2.	(a) 13.33Ω	1 M	1 min
3.	(d) Ohm's law, V=IR	1 M	1 min

4.	(b) Pentavalent	1 M	1 min
5.	(b) Holes	1 M	1 min
6.	(b) Insulator	1 M	1 min
7.	(a) Forward Biased::R=0	1 M	1 min
8.	(c) T/11,600	1 M	1 min
9.	(a) $V_{rms} = V_m/\sqrt{2}$	1 M	1 min
10.	(c) 0.483	1 M	1 min

Part B


 $(2Q \times 5M = 10 \text{ Marks})$

	(- (•
Q No	Solution		Scheme of Marking	Max. Time required for each Question
1.	10 (ms) Forward Bias condition		Identify: - 0.5M each	
	Reverse Breakdown Int		Definition 1M each	
	(volte) VOR VOR 0.303 Voz V3, Eut-in Voltage or (volte) Revise bottomber Is V3 Knee Voltage Gurrent Is Si Ger	fin	Difference- 0.5M	10 Mins
	condition +-ID (MA)			
	A→Knee Voltage/cut-in voltage B→ Is: Reverse saturation current C→ Vbr: Breakdown voltage			

•

	parameters of P.N junction production. 1. Cut-in. voltage: Knee youtage (V3) 1. Cut-in. voltage at which diade current increases 1. It is the voltage at which diade current increases 1. It is the voltage at which diade current increases 1. It is the voltage at which diade is only and 1. Static resistant; pc resistance. 1. Static resistant; pc resistance. 1. It is the voltage at which junction breaks down 1. Reverse Severatown Voltage: Var 1. Reverse Breakdown Voltage: Var 1. Oynamic resistance; oc resistance. 1. Oynamic resistance; oc resistance. 1. Oynamic resistance; change in forward voltage to the change in forward current 1. It is the ratio of change in forward voltage to the change in forward current		
2.	KVL and Ohm's Law: definition/expression V1=5V V3=2V I4=8mA	Identify & define: 1M each= 2M	10 Mins

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1. i)	Forward-Bias Condition: A forward-bias condition is established by applying A forward-bias condition is established by applying the positive potential to the P-type material and the megative potential to the N-type material as shown in figure 16 Interpolation of Interpolation of the forward framed from Justice Due to the application of toward frame to the holes in the I-type are repelled by the positive terminal of the bias	Diagram: 1M • Explanation 2 M	
ii)	initially the electrons in the N-type are repetled by the negative terminal of the bias and are forced to move towards the junction. consequently the width of the depletion region decreases. As a result current due to majority carriers flows anode to cuthode. The current due to minority carriers flows apposite to the najority current. Here the diade current To in given by Ip = Imajority - Is As the applied voltage increases in magnitude, the depletion region will continue to decrease in width depletion region will continue to decrease in width a flood of electrons can pass through the junction In Survey Description.	1M+1M+1M	10 Mins
	The continue of the following		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Date: 18.11.2019

Course Code: ECE 101

Time: 1.00 PM to 2.00 PM

Course Name: ELEMENTS OF ELECTRONICS ENGINEERING

Max Marks: 30

Program & Sem: B. Tech (Chemistry Cycle) & I

Weightage: 15%

Instructions:

(i) Read the question properly and answer accordingly

Part A [Memory Recall Questions]

Answer all the Question. Each Question carries one mark.

(10x1M=10M)

(C.O.1 / C.O.2) [Comprehension Level]

- 1. A Full wave Bridge Rectifier uses
 - (a) 2 Diodes and Step Down Transformer
 - (b) 4 Diodes and Step Down Transformer
 - (c) 2 Diodes and Center-Tapped Transformer
 - (d) 4 Diodes and Center-Tapped Transformer
- 2. Filter is a circuit used to
 - (a) remove the DC-Components present in the rectifier output
 - (b) remove the AC-Ripples and DC Components present in the rectifier output
 - (c) remove the AC-Ripple Components present in the rectifier output
 - (d) None of the above
- 3. For a Half wave rectifier with capacitor filter the relationship between charging time T_1 , discharging time T_2 and the total Time T is given by:
 - a. $T_2 \gg T_1$ hence $T_2 = T$
 - b. $T_2 << T_1$ hence $T_2 = T/2$
 - c. $T_2 = T_1$ hence $T_2 = T$
 - d. $T_2 = T_1$ hence $T_2 = T/2$
- 4. The Zener Diodes are special purpose diodes manufactured
 - a. with Heavily doped Semiconductor to maintain Constant Current Level
 - b. with Lightly doped Semiconductor to maintain Constant Voltage Level
 - c. with Lightly doped Semiconductor to maintain Constant Current Level
 - d. with Heavily doped Semiconductor to maintain Constant Voltage Level

- 5. In Bipolar Junction Transistor, the Terminals: Emitter Base Collector
 - a. Heavily Moderately Lightly Doped
 - b. Heavily Lightly- Moderately Doped
 - c. Moderately Lightly- Heavily Doped
 - d. Lightly Moderately- Heavily Doped
- 6. For a NPN / PNP transistor to be operated in ACTIVE REGION the:
 - a. Emitter-Base Junction is Reversed Biased and Collector-Base Junction is Forward Biased
 - b. Emitter-Base Junction is Forward Biased and Collector-Base Junction is Reverse Biased
 - c. Emitter-Base Junction is Reversed Biased and Collection-Base Junction is Reverse Biased
 - d. Emitter-Base Junction is Forward Biased and Collection-Base Junction is Forward Biased
- 7. For a BJT the Current equation is:
 - a. IE= IC+IB
 - b. $I_{C} = I_{E} + I_{B}$
 - C. IB= IC+IE
 - d. IE= IC-IB
- 8. The Relationship between β and α is

 - a. $\beta = \frac{1}{1-\alpha}$ b. $\beta = \frac{\alpha}{1+\alpha}$ c. $\beta = \frac{\alpha}{1-\alpha}$ d. $\beta = \frac{1-\alpha}{1+\alpha}$
- 9. The BJT is used as a switch when the Operating Point is in
 - a. Cut-Off Region :: OFF STATE and Saturation Region :: ON STATE
 - b. Saturation Region::OFF STATE and Cut-Off Region:: ON STATE
 - c. Active Region:: OFF STATE and Saturation Region:: ON STATE
 - d. Saturation Region::OFF STATE and Active Region :: ON STATE
- 10. For a BJT in Common Emitter Configuration the Current Gain is defined as:
 - a. $\beta = \frac{IC}{IB}$
 - b. $\beta = \frac{IB}{IE}$
 - c. $\beta = \frac{IB}{IC}$
 - d. $\beta = \frac{IC}{IE}$

(C.O.1 / C.O.2) [Comprehension Level]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries five marks. (2Qx5M=10M)

11. Fill in the Blanks.

- (C.O.1/ C.O.2) [Comprehension level]
- a) The Avalanche Breakdown is caused due to high Kinetic Energy whereas Zener breakdown is due to high ------
- b) If the base current is 100µA and current amplification factor is 100, then the collector current is ------.
- c) The relationship between the current gains $\alpha \& \beta$ as $\alpha = \frac{\beta}{1+\beta}$ is True or False? -----
- d) "FIXED BIAS" transistor biasing circuit is also known as "BASE BIAS" circuit. True or False? ------
- e) For a Silicon Transistor, operated in Common Emitter Configuration (CE), the Knee voltage across the Base-Emitter Terminals (V_{BE}) is ------
- 12.Explain with neat diagram the construction & working Principle of PNP or NPN Transistor. (C.O.2) [Comprehension level]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries five marks. (2Qx5M=10M)

- 13. Sketch the V-I characteristics of a BJT in Common-Base and Common-Emitter Configuration with suitable Circuit diagram. (C.O.2) [Comprehension level]
- 14. For a Fixed Bias Circuit in CE configuration, with V_{cc} =30V, R_B =1.5M Ω , R_c =5K Ω , β = 100, neglecting V_{BE} , Draw the D-C Load Line and mark all the required quantities in the plot. (C.O.2) [Comprehension level]

SCHOOL OF ENGINEERING

Semester: 1st

Course Code: ECE 101

Course Name: Elements of Electronic Engineering

Date: 18-11-2019

Time: 1:00 PM - 2:00 PM

Max Marks:30 Marks

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title Module – 1,2	Number/Unit type /Module Title [10 Marks]		provoking type [10Marks] [s Levels Bloom's Levels		lem Solving type 0 Marks]	Total Marks [30]
1-10	C.O.1/ C.O.2	Module – 1 Module-2 (10-Objective Type Questions)	10					10
1-2	C.O.1/ C.O.2	Module -1 Module - 2 (Subjective Type Questions)		5	5			10
1-2	C.O.2	Module – 2 (Subjective Type Questions)				5	5	10

Total		10		10		10	30
Marks							
un u							

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 1st

Date: 18-11-2019

Course Code: ECE 101

Time: 1:00 PM - 2:00 PM

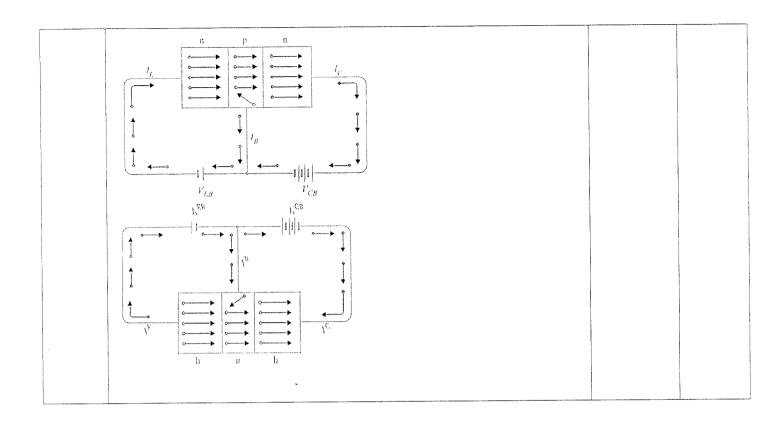
Course Name: Elements of Electronic Engineering

Max Marks: 30 Marks

Weightage: 15%

Part A

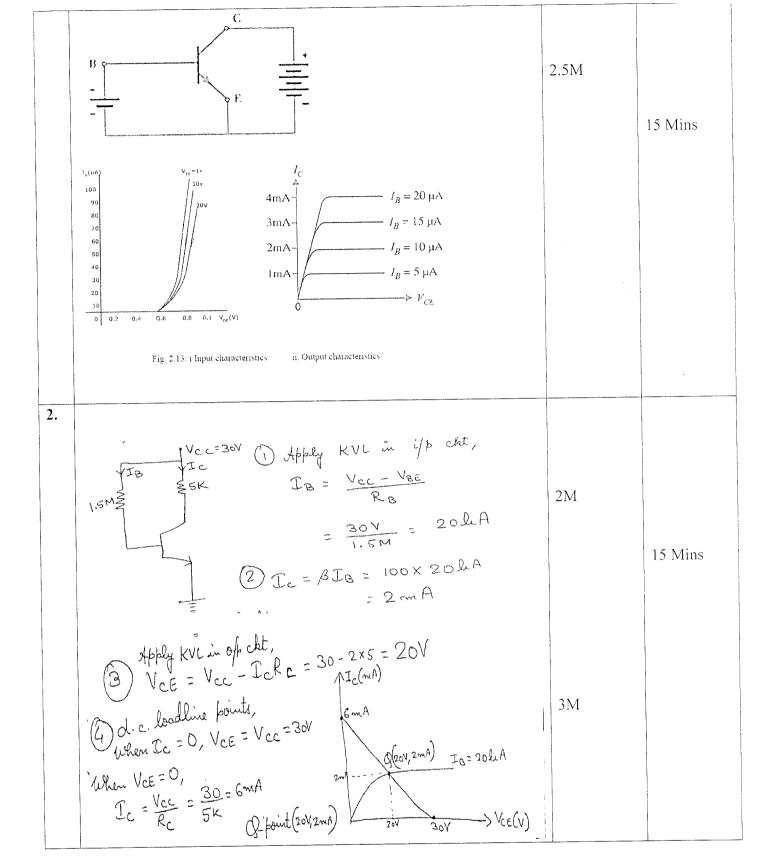
 $(10Q \times 1M = 10 \text{ Marks})$


Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	(b) 4 Diodes and Step Down Transformer	1 M	1 min
2.	(c) remove the AC-Ripple Components present in the rectifier output	1 M	1 min
3.	a. $T_2 \gg T_1$ hence $T_2 = T$	1 M	1 min
4.	d. with Heavily doped Semiconductor to maintain Constant Voltage Level	1 M	1 min
5.	b. Heavily – Lightly- Moderately Doped	1 M	1 min
6.	b. Emitter-Base Junction is Forward Biased and Collector- Base Junction is Reverse Biased	1 M	1 min
7.	a. le= lc+lB	1 M	1 min

8.	c. $\beta = \frac{\alpha}{1-\alpha}$	1 M	1 min
9.	a. Cut-Off Region :: OFF STATE and Saturation Region :: ON STATE	1 M	1 min
10.	$\mathbf{a}.\ \beta = \frac{IC}{IB}$	1 M	1 min

Part B

 $(2Q \times 5M = 10 \text{ Marks})$


Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	a) High Electric Field b) Voltage Level constant 10m f c) True d) True e) 0.7V	1 Marks each – 5M	5 Mins
2.	Either PNP/ NPN construction + Terminal Voltage & Currents +explanation HASE ENTIRE COLLECTOR FORWARD HEAPENS BIAS FORWARD HEAPENS ENTIRE COLLECTORIC FORWARD HEAPENS F	1+1+2+1= 5 M	10 Mins

Part C

 $(2Q \times 5M = 10 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	Characteristics of Common base Connection $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5M	

Roll No.						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20

Date: 31 December 2019

Course Code: ECE 101

Time: 01:00PM - 04:00PM

Course Name: Elements of Electronics Engineering

Max Marks: 100

Programme & Sem: B.Tech(Chemistry Cycle) & I Semester

Weightage: 50%

Instructions:

- (i) Read Questions carefully and answer accordingly
- (ii) Scientific and Non- programmable calculators are permitted
- (iii) This question paper contains two pages

Part A[Memory Recall Questions]

Answer all the Questions. Each question carries 1 mark.

1.	Fill in the blanks with appropriate answers:	(15Qx1M=15M)
i.	The cut in voltage of Germanium is	(C.O.No. 1) [Knowledge]
ii.	Efficiency of the full wave rectifier ideally is	(C.O.No. 1) [Knowledge]
iii.	Rectifier performs conversion of AC to	(C.O.No. 2) [Knowledge]
iv.	Diode current is large for bias condition.	(C.O.No. 1) [Knowledge]
٧.	In forward bias of pn junction diode, n-type material is conne	ected to terminal
	of the battery.	(C.O.No. 1) [Knowledge]
vi.	The current amplification factor in common emitter circuit is	S
		(C.O.No. 2) [Knowledge]
vii.	The device that transfers a signal from a low resistance	
:::	as If the base current is 100µA and the current amplification f	(C.O.No. 2) [Knowledge]
viii.		
	current isbit data bus.	(C.O.No. 1) [Knowledge]
ix.	The 8085 hasbit data bus.	(C.O.No. 4) [Knowledge]
Χ.	The 2's complement of 10101101 is	(C.O.No. 3) [Knowledge]
xi.	The microprocessor 8085 operates in maximum	
		(C.O.No. 4) [Knowledge]
xii.	The process of changingof a carrier Wave in	accordance with the intensity
	of the signal is known as Amplitude modulation.	(C.O.No. 4) [Knowledge]
xiii.	Microprocessor 8085 can address byte of m	emory.
	•	(C.O.No. 4) [Knowledge]
viv	De-Morgan's Law is A'+B'=	(C.O.No. 3) [Knowledge]

xv. Input Transducer in a communication system converts any form of signal to _____signal. (C.O.No. 4) [Knowledge]

2. Answer the following:

(15Qx1M=15M)

i.	Convert (105) ₁₀ to binary.	(C.O.No. 3) [Knowledge]
ii.	Convert (2FFE) ₁₆ to binary.	(C.O.No. 3) [Knowledge]
iii.	Find the 10's complement of 012398.	(C.O.No. 3) [Knowledge]
iv.	Find the 2's complement of 11001101.	(C.O.No. 3) [Knowledge]
٧.	Find the 9's complement of 89894.	(C.O.No. 3) [Knowledge]
vi.	Add 0101110 & 0101011.	(C.O.No. 3) [Knowledge]
vii.	For transistor to work as amplifier it is operate	
	False.	(C.O.No. 2) [Knowledge]
viii.	Use Basic Theorem to write:	
	A+A'B=	(C.O.No. 3) [Knowledge]
ix.	State the function of receiver in communication	•
		(C.O.No. 4) [Knowledge]
Χ.	Give one examples for both input & output tra	
		(C.O.No. 4) [Knowledge]
xi.	A resistor having value $10K\Omega$ is connected to	
	in the resistor.	(C.O.No. 1) [Knowledge]
xii.	The carrier signal in communication has low fr	•
		(C.O.No. 4) [Knowledge]
xiii.	If capacitance in filter circuit increases the ripp	
		(C.O.No. 1) [Knowledge]
xiv.	Name the only physical connection between a	
	M (1 (1 1)	(C.O.No. 4) [Knowledge]
XV.	Mention the difference between Static & Dyna	
		(C.O.No. 1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries 5 marks.

(4Qx5M=20M)

3. Identify the Transistor Configuration and the regions A, B & C as shown in figure1.

Mention the conditions for biasing in each region. (C.O. No. 2) [Comprehension]

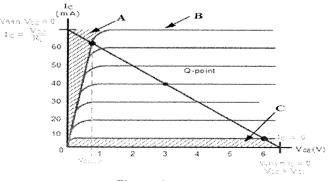


Figure 1

- **4.** Write short notes on 2 diode full-wave rectifier with suitable diagram. Mention its efficiency. (C.O. No. 1) [Comprehension]
- 5. State & Prove De-Morgan's theorem with the help of truth table.

(C.O. No. 3) [Comprehension]

6. Derive the following relationships: (i) $\alpha \rightarrow \gamma$

(C.O. No. 2) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks. (5Qx10M=50M)

- 7. Write the logic symbol, expression and truth table for the following logic gates
 - a. NOT
- b. AND
- c. OR
- d. NAND
- e. NOR

(ii) $\alpha \rightarrow \beta$

- f. Ex-OR
- g. Ex-NOR

(C.O. No. 3) [Comprehension]

- 8. (a) Form the SOP equation and simplify it for the given function: $f(A,B,C) = \sum (7,5,6)$. Implement the following using AND-OR gates and NAND-NAND gates: (C.O. No. 3) [Comprehension]
 - (b) Perform binary subtraction of $(1100110)_2$ and $(110101)_2$ with 2's Complement.
- 9. Explain with a neat diagram, the block diagram of Communication System.
 - (b) Define Amplitude modulation (AM) and frequency modulation (FM). Sketch the waveforms of AM & FM. (C.O. No. 4) [Comprehension]
- **10.** State the laws of Boolean algebra (Commutative law, Associative law, Distributive law). Prove each law using truth table method. (C.O. No. 3) [Comprehension]
- 11. Draw the architecture of 8085 microprocessor and explain the following blocks:
 - a. ALU b. Stack pointer
- c. Program counter
- d. Instruction register

(C.O. No. 4) [Comprehension]

SCHOOL OF ENGINEERING

Semester: Odd Sem 2019-20

Course Code: ECE 101

Course Name: Elements of Electronics Engineering

Date: 31 December 2019

Time: 3 Hour

Max Marks: 100

Weightage: 50%

Extract of question distribution [outcome wise & level wise]

		Unit/Module	Memory recall	Thought	Problem Solving	Total
2.10	C.O.NO	Number/Uni	type	provoking type	type	Marks
Q.NO	C.O.NO	t	[Marks allotted]	[Marks allotted]	[Marks allotted]	
	(%age of CO)	/Module Title	Bloom's Levels	Bloom's Levels	[ar	
			К	С	А	
Q 1.	CO1,CO 2	Module	15			15
		1,2,3,4				
Q 2.	CO1,CO 2	Module	15			15
		1,2,3,4				
Q 3.	CO 2	Module 2		5		5
Q 4.	CO 2	Module 2		5	•	5
Q 5.	CO 2	Module 3		5		5
Q 6.	CO 2	Module 2		5		5
Q 7.	CO 2	Module 3			10	10
Q 8.	CO 2	Module 3			10	10
Q 9.	CO 2	Module 4			10	10
Q 10.	CO 2	Module 3			10	10
Q 11.	CO 2	Module 4			10	10
	Total Marks		30	20	50	100

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Maitraiyee Konar]

Reviewer's Comments:

SCHOOL OF ENGINEERING

SOLUTION

Semester: Odd Sem 2019-20

Course Code: ECE 101

Course Name: Elements of Electronics Engineering

Date: 31 December 2019

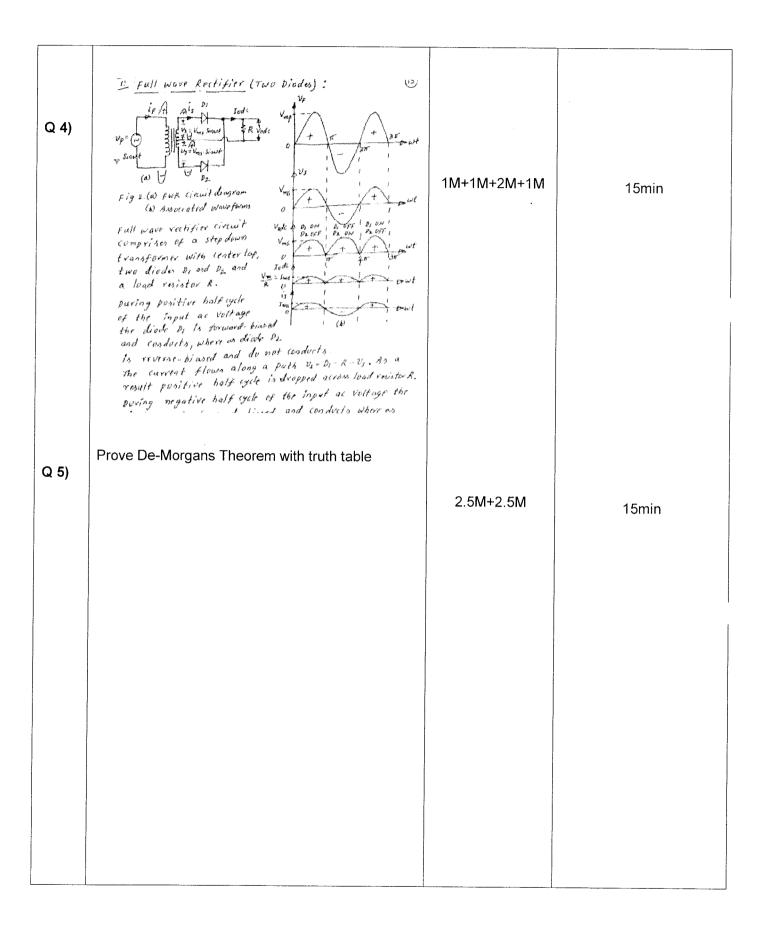
Time: 3 Hour

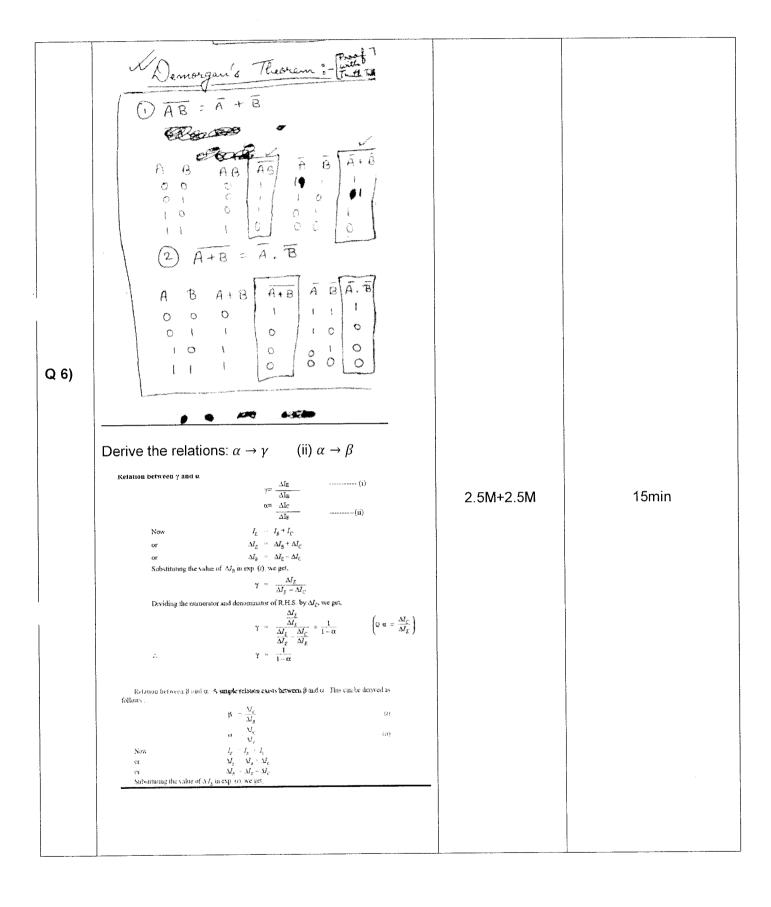
Max Marks: 100

Weightage: 50%

Part A

 $(30Q \times 1M = 30Marks)$

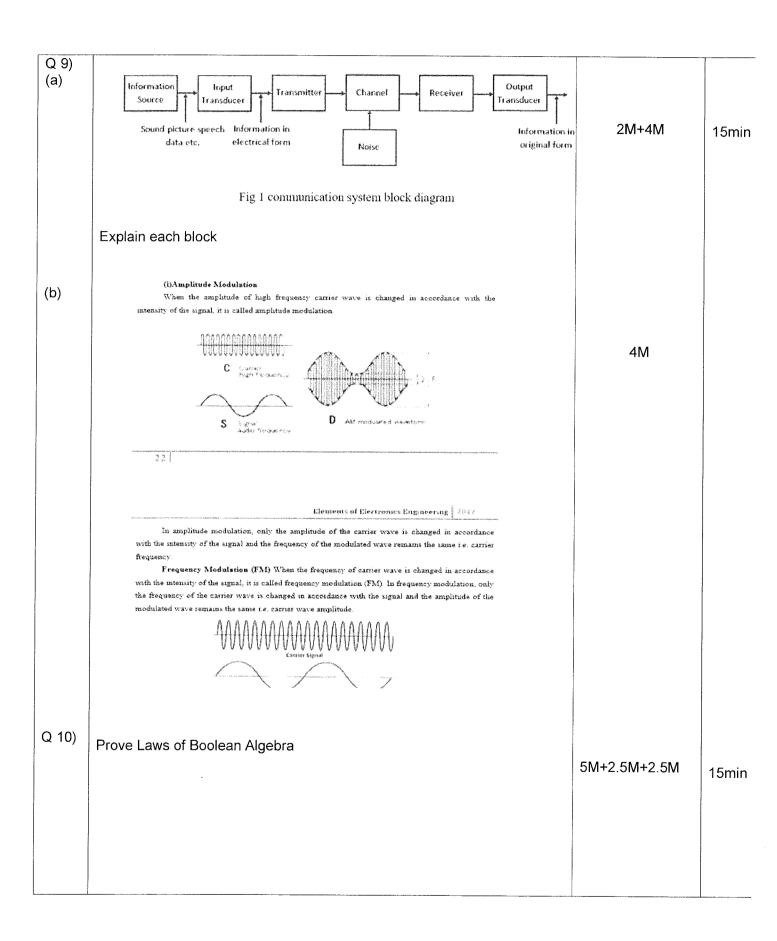

			(30Q X 11V1 = 30	marko)
Q No	Sc	olution	Scheme of Marking	Max. Time required for each Question
Q 1)	(i) 0.3V			
	(ii) 81.2%			
	(iii) Pulsating DC			
	(iv) Forward		1M each	17min
	(v) Negative			
	(vi) β			
	(vii)Transistor			
	(viii) 10mA			
	(ix) 8 bit			
	(x) 01010011			
	(xi) 3MHz			
	(xii)Amplitude			
	(xiii) 64K			
	(xiv) (AB)'			
	(xv) Electrical			

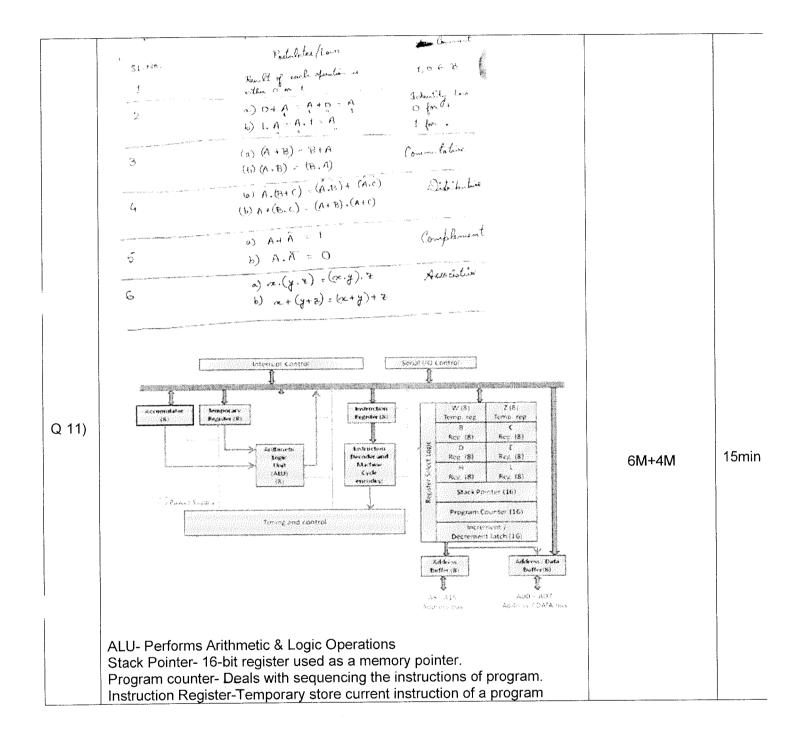

Q 2.	(i) 1101001		
	(ii) 001011111111110		
	(iii) 987602		
	(iv) 00110011	1M each	18min
	(v) 10105		
Ì	(vi) 1011001		
	(vii)False		
	(viii) A+B		
	(ix) Extract message signal from modulated		
	signal.		
	(x) Microphone, Loudspeaker		
	(xi) 5mA		
	(xii)False		
	(xiii) False		
	(xiv) Channel		
1	(xv) Static- V/I		
	Dynamic- ΔV/ΔI		

Part B

 $(4Q \times 5M = 20Marks)$

	–		,
Q No	Solution	Scheme of Marking	Max. Time required for each Question
Q 3)	CE configuration A- Saturation B- Active C- Cut-off	0.5M 0.5M +0.5M+0.5M	15min
	Saturation Region: Both the junctions are in forward bias condition. Active Region: Input junction is forward bias while output junction is reverse bias Cut- off Region: Both the junctions are in reverse bias condition.	1M+1M+1M	


Name and which will be the state of the control of	Elements of Electronics Engineering 2017	ec.	
Dividing the numerator and a	$\beta = \frac{M_C}{M_E + M_C}$ $\beta = \frac{M_C + M_F}{M_E + M_C} = \alpha$ $\beta = \frac{M_C + M_F}{M_E + M_C} = \alpha$ $\beta = \frac{M_C}{M_E + M_C}$ $\beta = \frac{\alpha}{1 - \alpha}$ $\beta = \frac{\alpha}{1 - \alpha}$		


Part C

 $(5Q \times 10M = 50Marks)$

Q No	Solution	Scheme of Marking	Ma Time required for each Question
Q 7)	Digital Lagic Cate John State Regical operators Not, AND, CR NOT/Towner State AND State Super ARB O O O O O O O O O O O O O O O O O O O	1M+(1.5Mx6)	15min

	NOR gold A.B. A.B. A.B. A.B. A.B. A.B. A.B. A.B		
	Ex OR felk (Gradien 120) Sept with 100 H		
Q 8) (a)	A B A B A B A B A B A B B B B B B B B B		
	[(ABE) / m(7, 5.6) ABE + ABE + ABE AC (BIB) + ABE AC + ABE - A (C + CB) - A(BIB) - ABIAC AC + ABE - A (C + CB) - A(BIB) - ABIAC	1M+2M	15min
	AND OR Implementation A B C DAG LAB AB TAC NANO NANO Implementation A B C	2M+2M	
(b)	Ans: 0110001 1:00110 - 0110101	3 M	
	100100 1100100 11000100 110001		

