

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SETA

TEST 1

Sem & AY: Odd Sem. 2019-20

Course Code: MAT 105

Course Name: CALCULUS & LINEAR ALGEBRA

Program & Sem: B. Tech (All Program) & (

Date: 27.09.2019

Time: 1:00 PNI to 2:00 PNI

Max Marks. 30

Weightage, 15%

Instructions:

(1) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recarl Questions]

Answer will the Questions. Each Question carries two marks.

(JQx2N=8M)

Define Cauchy's mean Value Theorem.

(C.C.NO.1) [Knowledge]

2. State Rolle's theorem.

(C.O.NO.1) [Knowledge]

3. Evaluate $\frac{Li}{x \to 0} \frac{\sin^2 x}{x}$

(C.O.NO.1) [Comprehension]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question parries four marks.

(3Qx4M=12M)

4. Expand $\sqrt{1+\sin 2x}$ by Maciaurin's series up to the term containing x^2

(C.O.NO.1) [Comprehension]

5. Verify Lagrange's Mean value theorem for $f(x) = e^x \ln [0,1]$

(C.O.NO.1) [Comprehension]

3. Evaluate $\frac{Lt}{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$

(C.O.NO.1) [Comprehension]

Part C [Problem Solving Questions]

Answer both Questions. Each Question carries six marks.

(20x6W=12W)

7. If f(x) and g(x) are respectively e^x and e^{-x} , prove that 'c' of Cauchy's mean value theorem is the arithmetic mean between a and b.

(C.O.NO. 1) [Comprehension]

8. Obtain Taylor's series expansion of $\log(\cos x)$ about the point $x = \frac{\pi}{3}$ up to third degree term. (C.O. NO.1) [Comprehension]

Semester: 1st Sem

Course Code: MAT105

Course Name: Calculus and Linear Algebra

Date: 27/09/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	red	recall type [Marks allotted] Bloom's Levels		rks [Marks allotted] red] Bloom's Levels m's		[Ma	ilem So type rks allo orn's Le	otted]	Total Marks	
			K	С	Α	K	C	Α	K	С	А	
1	CO 1	Module 1	2M		· Therefore the arrand							2M
2	CO 1	Module 1		2M				-				2M
3	CO 1	Module 1		2M								2M
4	CO 1	Module 1	-				4 M					4M
5	CO 1	Module 1					4 M	a Australian and a summer management of a conse				4M
6	CO 1	Module 1		the state of the s			4 M			And a second sec		4M
7	CO 1	Module 1		The state of the s						6 M		6M
8	CO 1	Module 1		***************************************						6 M		6M
9	CO 1	Module 1								6 M		6M
	Total Marks		0	V		and the state of t	12	5		12		30 M

K =Knowledge Level C = Comprehension Level, A = Application Level

questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Dr V Ramalatha]

Reviewers' Comments

Annexure-II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 27/09/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Semester: 1st Sem

Course Code: MAT105

Course Name: Calculus and Linear Algebra

Part A

 $(3Q \times 2M = 6 \text{ Marks})$

Q No	Solution .	Scheme of Marking	Max. Time required for each Question
1	Def	2 M	3 M
2	Statement	2M	3 M
3	$Lt \frac{\sin^2 x}{x \to 0} = \frac{0}{0}$ $Ans = 0$	2 M	3 M

Part B

 $(3Q \times 4M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Maclaurin's series	l M	7 M
	f(0) = 1, $f'(0) = 1$, $f''(0) = -1Substitution$	2 M 1 M	
5	Continuous , Differentiable	1 M	7 M
		1 M	

	$f'(c) = \frac{f(o) - f(a)}{b - a}$ $c = 0.531$	_ 1VI	
6	$\infty - \infty \text{ and } \frac{Lt}{x \to 0} \frac{x - \sin x}{x \sin x}$ $\frac{Lt}{x \to 0} \frac{x - \sin x}{x^2} = \frac{0}{0}$	1 M	7 M
	$Lt \frac{1 - \cos x}{x \to 0} \frac{0}{2x}$ Ans = 0	l M	

Part C

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
	Continuous, Differentiable and $g'(x) \neq 0$	2 M	10 M
7	$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$	I M	
	$c = \frac{a+b}{2} \in (a,b)$	3 M	
8	Taylor's series $f'(\pi/3) = \log(1/2), f'(\pi/3) = -\sqrt{3},$ $f''(\pi/3) = -4, f'''(\pi/3) = -8\sqrt{3}$ Substitution	1 M 1 M-+ 1 M 1 M+1 M 1 M	10 M
9	1° and Apply log on both sides $\frac{1}{\sin x/x} \frac{x \cos x - \sin x}{x^2}$	1M 1 M	10 M
	$x \to 0 \qquad 1$ $Lt x \cos x - \sin x$	1 M	
	$x \to 0 \qquad x^2$ $Lt \qquad -x\sin x = 0$	1 M	
:	$x \to 0 \frac{x \sin x}{2x} = 0$	l M	
	Ans) 1	lM	t

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET A

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: MAT 105

Time: 1:00 PM to 2:00 PM

Course Name: CALCULUS & LINEAR ALGEBRA

Max Marks: 30

Program & Sem: B.Tech (All Programs) & I

Weightage: 15%

instructions:

I. Read the question properly and answer accordingly.

II. Question paper consists of 3 parts.

III. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries three marks. (2Qx3M=6M)

1. Evaluate
$$\int_{0}^{\pi} x \cos^{6} x \ dx$$

(C.O.NO.3) [Knowledge]

2. If
$$u = \log \left[\frac{x^4 + y^4}{x + y} \right]$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks. (2Qx6M=12M)

3. Find the extreme values of the following function

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

(C.O.NO.2) [Comprehension]

4. Evaluate $\int_{0}^{\infty} \frac{x^4}{\left(1+x^2\right)^4} dx$

(C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(10x12NI=12NI)

5. Obtain the reduction formula for $\int \sin^n x \ dx$ and $\int \sin^n x \ dx$ 0 (C.O.NO.3) [Comprehension]

Course Code: MAT105

Date: 16/11/2019

Semester: 1st Sem Time: 1:00 PM to 2:00 PM

Max Marks: 30

Course Name: Calculus and Linear Algebra Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C,O.NO	Unit/Module Number/Unit /Module Title	[Ma	otted]	prov [Mai	Thought voking the sallot om's Le	ype ted]		olem So type arks allo	_	Total Marks
1	CO 3	Module 3	ЗМ								3M
2	CO 2	Module 2	3M								3M
3	CO 2	Module 2				6M					6M
4	CO 3	Module 3				6M					6M
5	CO 3	Module 3						To a second	12M		12M
	Total Marks		6M			12M			12M		30 M

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 16 /11/2019

Semester: 1st Sem

Time: 1:00 PM to 2:00 PM

Course Code: MAT105 Max Marks: 30

Course Name: Calculus and Linear Algebra Weightage: 15%

Part A

 $(2Q \times 3M = 6 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	$I = \int_{0}^{\pi} (\pi - x)\cos^{6}(\pi - x)xdx$	1 Mark	5 Minutes
	V	1 Mark	
	$I = \pi \int_{0}^{\pi/2} \cos^6 x dx$	1 Marks	
2	$\frac{5\pi/32}{e^{u}}$ is homogeneous function of degree n = 1 formula $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3$	1 Marks 1 Mark 1 Mark	5 Minutes

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	$f_x = 3x^2 + 3y^2 - 30x + 72$ $f_y = 6xy - 30y$	1 Mark + 1 Mark	8 Minutes
	Stationary points are $(4, 0)$, $(6, 0)$, $(5, 1)$, $(5, -1)$ A = 6x-30, B = 6y, C = 6x-30	2 Mark	
	At $(4,0)$, A= -6<0 & AC - B ² = 36 > 0 Maximum value is f $(4,0)$ = 112	1 Mark	
	At $(6, 0)$, $A=6>0$ & $AC-B^2=-36>0$ Minimum value is $f(6, 0)=108$	l Mark	

Put $x = \tan \theta$, $dx = \sec^2 \theta$, $\theta = 0$ to $\frac{\pi}{2}$	2 Marks	8 Minutes
Using Substitution I = $\int_{0}^{\pi/2} \sin^2 \theta \cos^3 \theta \ d\theta$	2 Mark	
Formula Using reduction formula I = 2/15	l Mrak l Mark	

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

		` `	· ·
Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$I_n = \int \sin^n x dx = \int \sin^{n-1} x \sin x dx$ Integration by parts	l Mark	20 Minutes
	$I_n = \frac{-\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} I_n$	5 Mark	
	$\int_{0}^{\pi/2} \sin^{n} x = \frac{n-1}{n} I_{n}$	1 Marks	
	0 1 ₀ , 1 ₁	1 Mark	
	$\int_{0}^{\pi/2} \sin^{n} x = \frac{n-1}{n} \frac{n-3}{2} \dots k$	4 Mark	
	Getting Where $k=\pi/2$ if n is even		
	k=1 if n is odd		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET B

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: MAT 105

Time: 1:00 PM to 2:00 PM

Course Name: CALCULUS & LINEAR ALGEBRA

Max Marks: 30

Program & Sem: B.Tech (All Programs) & I

Weightage: 15%

Instructions:

I. Read the question properly and answer accordingly.

II. Question paper consists of 3 parts.

III. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries three marks. (2Qx3M=6M)

1. Evaluate
$$\int_{0}^{\pi} x \sin^{8} x \ dx$$

(C.O.NO.2) [Knowledge]

2. If
$$u = \tan^{-1} \left[\frac{x^2 + y^2}{x - y} \right]$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks.

(2Qx6M=12M)

3. Find the extreme values of the function $f(x,y) = x^3 + y^3 - 3x - 12y + 20$

(C.O.NO.2) [Comprehension]

4. Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{7/2}} dx$$
 (C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

5. Obtain the reduction formula for
$$\int \cos^n x \ dx$$
 and $\int \cos^n x \ dx$

(C.O.NO.3) [Comprehension]

SAM MORE KNOWLEDGE

Semester: 1st Sem

Course Code: MAT105

Course Name: Calculus and Linear Algebra

Date: 16/11/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma		lotted]	prov [Mai	Though oking to ks alloto om's Le	ype ted]		olem S type irks alk	•	Total Marks
The state of the s	CO 3	Module 3	3M									3M
2	CO 2	Module 2	3M	111111111111111111111111111111111111111								3M
3	CO 2	Module 2					6M					6M
4	CO 3	Module 3		The state of the s			6M					6M
5	CO 3	Module 3		Table Of the Bally Anna Anna Anna Anna Anna Anna Anna Ann						12M		12M
	Total Marks		6M				12M	CONTRACTOR	Profesional Profesion (Profesion Profesional Profesion P	12M		30 M

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 16 /11/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Course Code: MAT105

Semester: 1st Sem

Course Name: Calculus and Linear Algebra

Part A

 $(2Q \times 3M = 6 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
The second secon	Using property $I = \int_{0}^{\pi} (\pi - x) \sin^{8}(\pi - x) dx$ $\pi = \int_{0}^{\pi} (\pi - x) \sin^{8}(\pi - x) dx$	l Mark	6 Minutes
	Reducing to $I = \pi \int_{0}^{\pi/2} \sin^8 x \ dx$	1 Mark	
and the second state of th	Using Reduction formula $I = \frac{35\pi^2}{256}$	l Mark	
2	tan u is homogeneous function of degree $n = 1$	1 Marks	6 Minutes
	$x\sec^2 u \frac{\partial u}{\partial x} + y\sec^2 u \frac{\partial u}{\partial y} = \tan u$	l Mark	
	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{\tan u}{\sec^2 u} = \sin u \cos u$	1 Mark	

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	$f_x = 3x^2 - 3$, $f_y = 3y^2 - 12$	l Mark	10 Minutes
	Stationary points are (1, 2), (1, -2), (-1, 2), (-1, -2)	1 Mark	
	A = 6x, B = 0, C = 6y	l Mark	
	At $(-1, -2)$, $A = -6 < 0 & AC - B^2 = 72 > 0$	1 Mark	

	Maximum value is f (-1, -2) = 38 At (1, 2), A= $6 > 0$ & AC - B ² = $72 > 0$ Minimum value is f (1, 2) = 2	l Mark l Mark	
4	Put $x = \tan \theta$, $dx = \sec^2 \theta$, $\theta = 0$ to $\frac{\pi}{2}$	2 Marks	10 Minutes
	Using Substitution I = $\int_{0}^{\pi/2} \sin^2 \theta \cos^3 \theta \ d\theta$	3 Marks	
	Using reduction formula I = 2/15	1 Mark	

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$I_n = \int \cos^n x \ dx = \int \cos^{n-1} x \cos x \ dx$	l Mark	18 Minutes
	Integration by parts	1 Mark	
	Simplification and getting $I_n = \int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} I_{n-2}$	4 Marks	
	Applying limits $I_n = \frac{n-1}{n}I_{n-2}$	2 Marks	
	Using recurrence relation and obtaining $I_n = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_1 \text{ if } n \text{ is odd}$ $I_n = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_0 \text{ if } n \text{ is even}$	2 Marks	
	$I_1 = 1$ and $I_0 = \frac{\pi}{2}$ and the result	2 Marks	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET A

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: MAT 105

Time: 1:00 PM to 2:00 PM

Course Name: CALCULUS & LINEAR ALGEBRA

Max Marks: 30

Program & Sem: B.Tech (All Programs) & I

Weightage: 15%

instructions:

I. Read the question properly and answer accordingly.

II. Question paper consists of 3 parts.

III. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries three marks. (2Qx3M=6M)

1. Evaluate
$$\int_{0}^{\pi} x \cos^{6} x \ dx$$

(C.O.NO.3) [Knowledge]

2. If
$$u = \log \left[\frac{x^4 + y^4}{x + y} \right]$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks. (2Qx6M=12M)

3. Find the extreme values of the following function

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

(C.O.NO.2) [Comprehension]

4. Evaluate $\int_{0}^{\infty} \frac{x^4}{\left(1+x^2\right)^4} dx$

(C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(10x12NI=12NI)

5. Obtain the reduction formula for $\int \sin^n x \ dx$ and $\int \sin^n x \ dx$ 0 (C.O.NO.3) [Comprehension]

Course Code: MAT105

Date: 16/11/2019

Semester: 1st Sem Time: 1:00 PM to 2:00 PM

Max Marks: 30

Course Name: Calculus and Linear Algebra Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C,O.NO	Unit/Module Number/Unit /Module Title			Thought provoking type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks			
1	CO 3	Module 3	ЗМ									3M
2	CO 2	Module 2	3M									3M
3	CO 2	Module 2					6M					6M
4	CO 3	Module 3					6M					6M
5	CO 3	Module 3							To a second	12M		12M
	Total Marks		6M				12M			12M		30 M

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 16 /11/2019

Semester: 1st Sem

Time: 1:00 PM to 2:00 PM

Course Code: MAT105 Max Marks: 30

Course Name: Calculus and Linear Algebra Weightage: 15%

Part A

 $(2Q \times 3M = 6 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	$I = \int_{0}^{\pi} (\pi - x)\cos^{6}(\pi - x)xdx$	1 Mark	5 Minutes
	V	1 Mark	
	$I = \pi \int_{0}^{\pi/2} \cos^6 x dx$	1 Marks	
2	$\frac{5\pi/32}{e^{u}}$ is homogeneous function of degree n = 1 formula $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3$	1 Marks 1 Mark 1 Mark	5 Minutes

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	$f_x = 3x^2 + 3y^2 - 30x + 72$ $f_y = 6xy - 30y$	1 Mark + 1 Mark	8 Minutes
	Stationary points are $(4, 0)$, $(6, 0)$, $(5, 1)$, $(5, -1)$ A = 6x-30, B = 6y, C = 6x-30	2 Mark	
	At $(4,0)$, A= -6<0 & AC - B ² = 36 > 0 Maximum value is f $(4,0)$ = 112	1 Mark	
	At $(6, 0)$, $A = 6 > 0$ & $AC - B^2 = -36 > 0$ Minimum value is $f(6, 0) = 108$	l Mark	

Put $x = \tan \theta$, $dx = \sec^2 \theta$, $\theta = 0$ to $\frac{\pi}{2}$	2 Marks	8 Minutes
Using Substitution I = $\int_{0}^{\pi/2} \sin^2 \theta \cos^3 \theta \ d\theta$	2 Mark	
Formula Using reduction formula I = 2/15	l Mrak l Mark	

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

		` `	· ·
Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$I_n = \int \sin^n x dx = \int \sin^{n-1} x \sin x dx$ Integration by parts	l Mark	20 Minutes
	$I_n = \frac{-\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} I_n$	5 Mark	
	$\int_{0}^{\pi/2} \sin^{n} x = \frac{n-1}{n} I_{n}$	1 Marks	
	0 1 ₀ , 1 ₁	1 Mark	
	$\int_{0}^{\pi/2} \sin^{n} x = \frac{n-1}{n} \frac{n-3}{2} \dots k$	4 Mark	
	Getting Where $k=\pi/2$ if n is even		
	k=1 if n is odd		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET B

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: MAT 105

Time: 1:00 PM to 2:00 PM

Course Name: CALCULUS & LINEAR ALGEBRA

Max Marks: 30

Program & Sem: B.Tech (All Programs) & I

Weightage: 15%

Instructions:

I. Read the question properly and answer accordingly.

II. Question paper consists of 3 parts.

III. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries three marks. (2Qx3M=6M)

1. Evaluate
$$\int_{0}^{\pi} x \sin^{8} x \ dx$$

(C.O.NO.2) [Knowledge]

2. If
$$u = \tan^{-1} \left[\frac{x^2 + y^2}{x - y} \right]$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks.

(2Qx6M=12M)

3. Find the extreme values of the function $f(x,y) = x^3 + y^3 - 3x - 12y + 20$

(C.O.NO.2) [Comprehension]

4. Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{7/2}} dx$$
 (C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

5. Obtain the reduction formula for
$$\int \cos^n x \ dx$$
 and $\int \cos^n x \ dx$

(C.O.NO.3) [Comprehension]

SAM MORE KNOWLEDGE

Semester: 1st Sem

Course Code: MAT105

Course Name: Calculus and Linear Algebra

Date: 16/11/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title			Thought provoking type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks			
The state of the s	CO 3	Module 3	3M									3M
2	CO 2	Module 2	3M	111111111111111111111111111111111111111								3M
3	CO 2	Module 2					6M					6M
4	CO 3	Module 3		The state of the s			6M					6M
5	CO 3	Module 3		Table Of the Bally Anna Anna Anna Anna Anna Anna Anna Ann						12M		12M
	Total Marks		6M				12M	CONTRACTOR	Profesional Profesion (Profesion Profesional Profesion P	12M		30 M

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 16 /11/2019

Time: 1:00 PM to 2:00 PM

Max Marks: 30

Weightage: 15%

Course Code: MAT105

Semester: 1st Sem

Course Name: Calculus and Linear Algebra

Part A

 $(2Q \times 3M = 6 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
The second secon	Using property $I = \int_{0}^{\pi} (\pi - x) \sin^{8}(\pi - x) dx$ $\pi = \int_{0}^{\pi} (\pi - x) \sin^{8}(\pi - x) dx$	l Mark	6 Minutes
	Reducing to $I = \pi \int_{0}^{\pi/2} \sin^8 x \ dx$	1 Mark	
and the second state of th	Using Reduction formula $I = \frac{35\pi^2}{256}$	l Mark	
2	tan u is homogeneous function of degree $n = 1$	1 Marks	6 Minutes
	$x\sec^2 u \frac{\partial u}{\partial x} + y\sec^2 u \frac{\partial u}{\partial y} = \tan u$	l Mark	
	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{\tan u}{\sec^2 u} = \sin u \cos u$	1 Mark	

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	$f_x = 3x^2 - 3$, $f_y = 3y^2 - 12$	l Mark	10 Minutes
	Stationary points are (1, 2), (1, -2), (-1, 2), (-1, -2)	1 Mark	
	A = 6x, B = 0, C = 6y	l Mark	
	At $(-1, -2)$, $A = -6 < 0 & AC - B^2 = 72 > 0$	1 Mark	

	Maximum value is f (-1, -2) = 38 At (1, 2), A= $6 > 0$ & AC - B ² = $72 > 0$ Minimum value is f (1, 2) = 2	l Mark l Mark	
4	Put $x = \tan \theta$, $dx = \sec^2 \theta$, $\theta = 0$ to $\frac{\pi}{2}$	2 Marks	10 Minutes
	Using Substitution I = $\int_{0}^{\pi/2} \sin^2 \theta \cos^3 \theta \ d\theta$	3 Marks	
	Using reduction formula I = 2/15	1 Mark	

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$I_n = \int \cos^n x \ dx = \int \cos^{n-1} x \cos x \ dx$	l Mark	18 Minutes
	Integration by parts	1 Mark	
	Simplification and getting $I_n = \int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} I_{n-2}$	4 Marks	
	Applying limits $I_n = \frac{n-1}{n}I_{n-2}$	2 Marks	
	Using recurrence relation and obtaining $I_n = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_1 \text{ if } n \text{ is odd}$ $I_n = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_0 \text{ if } n \text{ is even}$	2 Marks	
	$I_1 = 1$ and $I_0 = \frac{\pi}{2}$ and the result	2 Marks	

Roll No							

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

SET A

END TERM FINAL EXAMINATION

Semester: Odd semester- 2019-20

Date: 03 January 2020

Course Code: MAT 105

Time: 1.00 PM to 4.00 PM

Course Name: CALCULUS AND LINEAR ALGEBRA Program &Sem: B.Tech (Physics & Chemistry cycle) & I

Max Marks: 100 Weightage:50%

Instructions:

(i) Read the all questionscarefully and answer accordingly.

(ii) Scientific and Non-programmable calculators are permitted.

Part A[Memory Recall Questions]

Answer all the Questions. Each Question carries 02 marks.

(10Qx2M=20M)

1. Lagrange's mean value theorem states that if f(x) is continuous in (ii)differentiable in ____ then there exists at least one value 'c' in (a, b) such that (C.O.No.5) [Knowledge]

$$2. \lim_{x \to 0} \frac{a^x - b^x}{x} = \underline{\hspace{1cm}}$$

(C.O.No.1) [Comprehension]

3. If $z = y \sin x + e^{xy}$ then $\frac{\partial z}{\partial y} =$ _____

(C.O.No.2) [Knowledge]

4. If $u = \frac{x^3 + y^3}{\sqrt{x - \sqrt{y}}}$, then by Euler's theorem $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$ _____ (C.O.No.2) [Knowledge]

5. $\int_{0}^{\infty} x^{3/2} e^{-x} dx =$ ______

(C.O.No.3) [Knowledge]

6. $\beta\left(\frac{5}{2}, \frac{5}{2}\right) =$ _____

(C.O.No.3) [Comprehension]

7. Is $\sum \frac{1}{n^{1/2}}$ convergent or divergent?

(C.O.No.4) [Knowledge]

8. The half range cosine series of f(x) in $(0, \pi)$ is _____ where $a_n =$ ____

(C.O.No.4) [Knowledge]

9. Rank of $\begin{vmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{vmatrix} = \underline{\hspace{1cm}}$

(C.O.No.5) [Knowledge]

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.N	C.O.N	Unit/Module Number/Unit		ory red type	call	1	ought king ty	ре	Problem Solving type		Total	
Q.N O.	O.O.N	/Module Title	[Mar	ks allo	tted]	[Mark	s allotte	ed]		/larks		Marks
	(% age		Bloor	n's Le\	/els	Bloom	ı's Lev	els	all	otted]		
	of CO)		K	С	Α	K	С	Α	K	С	Α	
1	1	1	2M									2M
2	1	1		2M								2M
3	2	2	2M									2M
4	2	2	2M									2M
5	3	3		2M								2M
6	3	3	2M									2M
7	4	4	2M									2M
8	4	4	2M									2M
9	5	5	2M									2M
10	5	5	2M									2M
11	1	1				10M						10M
12	2	2				10M						10M
13	3	3				10M						10M
14	4	4					10M					10M
15	5	5					10M					10M
16	3	3								15M		15M
17	5	5							15M			15M
	Total M	arks	16M	4M		30M	20M		15M	15M		100M

K = Knowledge Level C = Comprehension Level, A = Application Level

8	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$	2M	4 Minutes
9	2	2M	4 Minutes
10	1,6	2M	4 Minutes

Part B

(5Q x 10M = 50 Marks)

			n oo wano,
Q No	Solution	Scheme of Marking	Max. Time required for each Question
11 (i)	(i). Taylor's series about the point $x = \frac{\pi}{4}$	2 Marks	6Minutes
	$f(x) = f\left(\frac{\pi}{4}\right) + \left(x - \frac{\pi}{4}\right)f'\left(\frac{\pi}{4}\right) + \frac{\left(x - \frac{\pi}{4}\right)^2}{2!}f''\left(\frac{\pi}{4}\right) + \dots$	3 Marks	
	$f\left(\frac{\pi}{4}\right) = 1, f'\left(\frac{\pi}{4}\right) = 2, f''\left(\frac{\pi}{4}\right) = 8, f'''\left(\frac{\pi}{4}\right) = 16$	1 Marks	
	$f(x) = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3$		
11 (ii)	b. Maclaurin's series		4 Minutes
	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots$	1 Mark	
	f(0) = 0, f'(0) = 1, f''(0) = -1,	2 Marks	
	$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$	1 Mark	
12	$f_x = 3x^2 - 3$ $f_y = 3y^2 - 12$	2 Marks	15 Minutes
	Stationary points are (1, 2), (1, -2), (-1, 2), (-1, -2)	2 Marks	
	A = 6x, B = 0, C = 6y	2 Marks	
	At (-1, -2) , A= -6<0 & AC – B ² =72> 0 Maximum value is f (-1, -2) = 38	2 Marks	
	At (1, 2), A= 6 > 0 & AC – B ² =72> 0 Minimum value is f (1, 2) = 2	2 Marks	
13	Applying the property $\int_{0}^{\pi} f(x)dx = \int_{0}^{\pi} f(\pi - x)dx$	2 marks	15 Minutes
	Upto Applying even function property	4 marks	
	Changing the limit and integrating	4marks	

	$I_{n} = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_{1} \text{ if } n \text{ is odd}$ $I_{n} = \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \dots \frac{2}{3} I_{0} \text{ if } n \text{ is even}$ $I_{1} = 1 \text{ and } I_{0} = \frac{\pi}{2} \text{ and the result}$	3 Marks	
17	Characteristic equation $\begin{vmatrix} 7-\lambda & -2 & 0 \\ -2 & 6-\lambda & -2 \\ 0 & -2 & 5-\lambda \end{vmatrix} = 0$	1 Mark	25 Minutes
	Eigen values are $\lambda = 3,6,9$	4 Marks	
	$(7 - \lambda)x - 2y = 0$ System of equations are $-2x + (6 - \lambda)y - 2z = 0$ $-2y + (5 - \lambda)z = 0$	1 Mark	
	$\lambda_1 = 3$ $X_1 = [1, 1, 1]^T$ $\lambda_1 = 6$ $X_2 = [1, 2, 1]^T$ $\lambda_1 = 9$ $X_3 = [1, -2, 1]^T$	3 Marks	
	$\lambda_1 = 6 X_2 = [1, 2, 1]^T$	3 Marks	
	$\lambda_1 = 9 \qquad X_3 = [1, -2, 1]^T$	3 Marks	

A second of w

	Roll No						
--	---------	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET B

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: MAT 105

Course Name: CALCULUS AND LINEAR ALGEBRA

Program & Sem: B.Tech (Physics & Chemistry Cycle) & I

Date: 03 January 2020

Time: 1:00 PM to 4:00 PM

Max Marks: 100 Weightage: 50%

Instructions:

- (i) Read the all questions carefully and answer accordingly.
- (ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer a	ill the	Questions.	Each	Question	carries	2 mark	S.
----------	---------	------------	------	----------	---------	--------	----

(10Qx2M=20M)

1. If a function
$$f(x)$$
 is (i) _____ in [a, b], (ii) ____ in (a, b) then by Cauchy's mean value theorem there exist at least one point c in (a, b) such that

$$f'(c) =$$
2. $\lim_{x \to 0} \frac{\tan^2 x}{x} =$

(C.O.No.1) [Knowledge]

3. If
$$u = x^y$$
 then $\frac{\partial u}{\partial x} = \underline{\qquad}$ and $\frac{\partial u}{\partial y} = \underline{\qquad}$

(C.O.No.1) [Comprehension]

(C.O.No.2) [Comprehension]

4. If
$$u = \frac{2x^5 - 4y^5}{x^2 - 2y^2}$$
 then by Euler's theorem $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \underline{\hspace{1cm}}$

(C.O.No.2) [Comprehension]

5. The value of
$$\int_{0}^{\infty} x^{1/2} e^{-x} dx = \text{ is }$$

(C.O.No.3) [Comprehension]

(C.O.No.3) [Comprehension]

7. The half range sine series of f(x) in
$$(0, \pi)$$
 is _____ where $b_n =$ ____ (C.O.No.4) [Comprehension]

8. Is $\sum \frac{1}{n^{5/2}}$ convergent or divergent?

(C.O.No.1) [Knowledge]

9. Rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 1 & 3 & 4 \end{bmatrix}$$
 is ______

(C.O.No.5) [Comprehension]

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Number/Unit	ty [Marks	ry recall rpe s allotted]	provok [Marks	_	Problem Solving type		Total Marks
	of CO)	/Module Title	Bloom	's Levels	Bloom	s Leveis	lwarks	allotted]	
			K	С	K	С	K	С	
1	CO 1	Module 1	2M						2M
2	CO 1	Module 1		2M					2M
3	CO 2	Module 2		2M					2M
4	CO 2	Module 2		2M					2M
5	CO 3	Module 3		2M					2M
6	CO 3	Module 3		2M					2M
7	CO 4	Module 4		2M					2M
8	CO 4	Module 4	2M						2M
9	CO 5	Module 5	2M						2M
10	CO 5	Module 5		2M					2M
11	CO 1	Module 1				10M			10M
12	CO 2	Module 2				10M			10M
13	CO 4	Module 4				10M	1,000		10M
14	CO 4	Module 4				10M			10M
15	CO 5	Module 5				10M			10M
16	CO 3	Module 3						15M	15M
17	CO 5	Module 5						15M	15M
	Total Ma	arks	2	OM	5	50M	3	0M	100M

K =Knowledge Level C = Comprehension Level, A = Application Level

SOLUTION

Semester:

Odd Sem. 2019-20

Course Code: MAT105

Course Name: CALCULUS AND LINEAR ALGEBRA

Program & Sem: B.TECH (All Programs) & I

Date:

03.01.2020

Time:

1:00PM to 4:00PM

Max Marks: 100

Weightage: 50%

Part A

 $(10Q \times 2M = 20Marks)$

	1 att 1x	(Zivi Zorviarno)
Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Continuous, Differentiable $f'(c) = \frac{f(b) - f(a)}{b - a}$	1 Mark 1 Mark	3 Minutes
2	$\lim_{x \to 0} \frac{\sin^2 x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \sin x$ $= 1 \times 0 = 0$	2 Marks	3 Minutes
3	$\frac{\partial u}{\partial x} = y^2$ $\frac{\partial^2 u}{\partial x^2} = 0$	1 Mark 1 Mark	3 Minutes
4	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u$	2 Marks	3 Minutes
5	$\int_{0}^{\infty} e^{-x} x^{5/2} dx = \Gamma\left(\frac{3}{2}\right)$ $= \frac{\sqrt{\pi}}{2}$	2 Marks	3 Minutes
6	$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma(1/2)\Gamma(1/2)}{\Gamma(1/2+1/2)}$ $= \pi$	2 Marks	4 Minutes
7	$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$	1 Mark	3 Minutes
	·	1 Mark	

	At (6, 0), A= 6 > 0 & AC - B ² = 36 > 0 Minimum value is f (6, 0) = 108	2 Marks	
13	a. Here $u_n = \frac{n^2}{(3n+1)(3n+4)(3n+7)}$	1 Mark	9 Minutes
	Take $v_n = \frac{1}{n}$ $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{27} \neq 0$ By Comparison test both series	1 Mark	
	converge or diverge together By p-series $\sum v_n$ is divergent, Hence $\sum u_n$ is	2 Marks	
	divergent	1 Mark	
	b. Here $u_n = \frac{n^p}{n!}$, $u_{n+1} = \frac{(n+1)^p}{(n+1)!}$	2 Marks	8 Minutes
	$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \frac{n}{\left(1 + \frac{1}{n}\right)^{p-1}} = \infty > 1$	2 Marks	
	By D'Alembert's test given series is convergent	1 Mark	
14	half range cosine series of the function $f(x)$ in		17 Minutes
	$(0,2)$ is $a_0 \sum_{n=0}^{\infty} a_n \left(n\pi x\right)$	2 Marks	
	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{2}\right)$ $a_0 = \frac{2}{l} \int f(x) dx = \frac{2}{2} \int x dx = 2$	2 Marks	
	$a_n = \frac{2}{2} \int_0^2 x \cos\left(\frac{n\pi x}{2}\right) dx = \frac{4}{n^2 \pi^2} \left[(-1)^n - 1 \right]$	4 Marks	
The state of the s	$f(x) = 1 + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\left[(-1)^n - 1 \right]}{n^2} \cos\left(\frac{n\pi x}{2}\right)$	2 Marks	
15	Augmented matrix interchanging row1 and row 3 $\begin{bmatrix} A:B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 5 & : & 7 \\ 2 & 10 & 1 & : & 13 \\ 10 & 1 & 1 & : & 12 \end{bmatrix}$	2 Marks	17 Minutes
	Using Row transformation Step 1: $[A:B] := \begin{bmatrix} 1 & 1 & 5 & : & 7 \\ 0 & 8 & -9 & : & -1 \\ 0 & -9 & -49 & : & -58 \end{bmatrix}$	2 Marks	

$(1-\lambda)x + y + 3z = 0$	
System of equations are $x + (5 - \lambda)y + z = 0$	
$3x + y + (1 - \lambda)z = 0$	3 Marks
$\lambda_1 = -2 X_1 = [1, 0, -1]$	3 Marks
$\lambda_1 = 3$ $X_2 = [1, -1, 1]$	3 Marks
$\lambda_1 = 6$ $X_3 = [1, 2, 1]$	