

	,		7	·		·	-	-		personal supplies	MATERIAL POR MATERIAL PROPERTY.	-
f .		,				1	1		i.			
	£	1	1 !	i		1	i	1		1		
	1	į.	1 1	1		+	į	1				
1 2 3 1 1 1 1 1 1 1 1 1 1	i	1	1			!	í	5				
I LIOH INC.	1	1	1 1	1			1					
	1	į.	1 2	1		4					1	
3	{	3	(1	:	1	5	!			1		
5	1	3	. 8	į			i	i :				
L	7	1	1 1	1			1	i 1				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem 2019-20

Course Code: CIV 201

Course Name: STRENGTH OF MATERIALS

Program & Sem: B.Tech (Civil) & III

Date: 27.09.2019

Time: 2:30 PM to 3:30 PM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly

(ii) Scientific and Non-programmable calculators are permitted

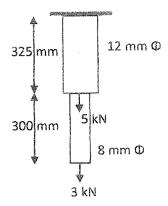
Part A (Memory Recall Questions)

Answer all the Questions. Each Question carries four marks.

(3Qx4M=12M)

- 1. Hooke's law states that stress is proportional to strain within elastic limit. Represent this on a stress-strain plot of Mild Steel. (C.O.NO.1)[Knowledge]
- 2. If E = 2G(1 + 1/m) and E = 3K(1 2/m), then give a relationship connecting E, G and K. Explain the notations. (C.O.NO.1)[Knowledge]
- 3. A member is loaded axially in tension resulting in elongation of the member. Give the expression to compute this deformation (or extension) and explain the terms.

(C.O.NO.1)[Knowledge]


Part B (Thought Provoking Questions)

Answer all the Questions. Each Question carries six marks.

(3Qx6M=18M)

4. A stepped bar shown in the figure is subjected to axial tensile load. Compute the change in length of the section. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$.

(C.O.NO.1)[Knowledge]

5. Drop in temperature can have detrimental effect on a material, resulting in thermal stresses and contraction of the material. A steel rod of 20 mm diameter and 6000 mm in length is connected to two grips, one at each end, at a temperature of 120°C. Find the force exerted when the temperature falls to 40°C: (a) If the ends do not yield (b) If the ends yield by 0.12 cm. Take E = 2x10⁵ N/mm² and α = 12x10⁻⁶ per °C.

(C.O.NO.1)[Comprehension]

6. Mohr's circle is a graphical method of finding stresses on any plane in the stressed element devised German Scientist Otto Mohr. However, for the following data: $\sigma_x = 50$ N/mm² and $\sigma_y = 80$ N/mm², both tensile, you are required to calculate the normal stress, tangential or shear stress, and the resultant stress on a plane inclined at 30° to the major principal plane.

(C.O.NO.1)[Comprehension]

Part C (Problem Solving Questions)

Answer both the Questions. Each Question carries five marks. (2Qx5M=10M)

7. If a load is suddenly applied on a member then the resultant stress on the member will be twice the intensity of the same load applied gradually. Now, if a bar is 3m long, 60 mm in diameter & subjected to a tensile load of 195 kN, find the stress and deformation when the load is gradually applied. What will be the maximum stress and deformation if this load is suddenly applied? Take E = 2x10⁵ N/mm².

(C.O.NO 1)[Comprehension]

8. A composite material is made up of atleast two different materials. In this case, an 18 mm diameter steel rod passes centrally through a copper tube of 26 mm internal diameter and 38 mm external diameter. The composite rod is 750 mm long, closed at each end by a rigid plate and subjected to an axial force of 35 kN. Find stresses induced in the steel rod and copper tube. Take $E_s = 2x10^5 \text{ N/mm}^2$ and $E_c = 1x10^5 \text{ N/mm}^2$.

(C.O.NO 1)[Comprehension]

GAIN HORE KNOWLEGGE

SCHOOL OF ENGINEERING

TEST - 1 SOLUTION

Semester: III

Course Code: CIV 201

Course Name: Strength of Materials

Branch & Sem: B.Tech Civil, III Sem, II Year

Date: 27-09-2019

Time: 2:30 PM to 3:30 PM

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number / Unit/Module Title	rec	lemo call ty [12 N lowle	/ре	pro	Though voking [18 M] npreher	type		lem solv type [10 M] prehens	•	Total Marks
				1				T.				
1	1		4					1				4
2	1			4							AND THE PERSON NAMED IN COLUMN	4
3	1				4		 				. grvnierugenmana, saana	4
4	1	1 – Stresses				6						6
5	1	and Strains					6				Marie Walder	6
6	1							6				6
7	1			 					5		A Marrier wo	5
8	1			+						5		5
	Total Marks			12			18			10		40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60% of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Dr. Nakul Ramanna]

Reviewers' Comments

SCHOOL OF ENGINEERING

TEST - I SOLUTION

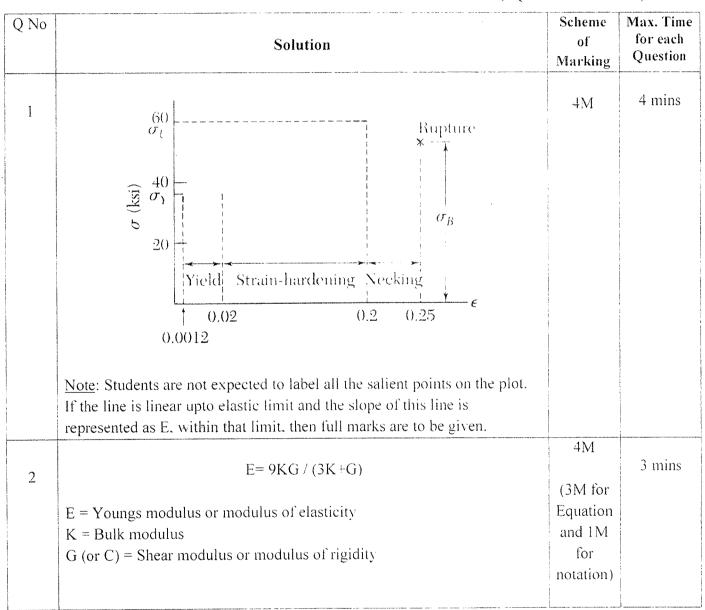
Semester III

Course Code: CIV 201

Course Name: Strength of Materials

Branch & Sem: B.Tech Civil, III Sem, II Year

Time: 2:30 PM to 3:30 PM


Max Marks: 40

Date: 27-09-2019

Weightage: 20%

Part A

 $(3Q \times 4M = 12 \text{ Marks})$

		4M	
3	$\Delta L = PL/AE$		3 mins
)	ΔL = Deformation or Extension	(2M for	
	P = Axial Load	Equation	
	L = Length of Member	and 2M	
	A = Area of member	for	
	E = Youngs modulus or modulus of elasticity	notation)	
		.i	.,

Part B

 $(3Q \times 6M = 18 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time for each Question
4	Area: Section $1 = \pi * 12^2 / 4 = 113.1 \text{ mm}^2$ Section $2 = \pi * 8^2 / 4 = 50.27 \text{ mm}^2$	6M	8 mins
	$\Delta L = \Delta L_1 + \Delta L_2 = (PL/AE)_1 + (PL/AE)_2$		The state of the s
	$\Delta L = [(8*1000*325) / (113.1*2.1x10^5) + (3*1000*300) / (50.27*2.1x10^5)$ $\Delta L = [0.1095 + 0.08525]$ $\Delta L = 0.1947 \text{ mm}$		
5	A = $\pi*20^2 / 4 = 314.16 \text{ mm}^2$ (a) If the ends do not yield P = σ A = α T E A P = $12 \times 10^{-6} * 80 * 2 \times 10^{5} * 314.16$ P = $60318.72 \text{ N} = 60.32 \text{ kN}$	6M	8 mins
	(b) If the ends yield by 0.12 cm $P = \sigma A = [(\alpha T L - \delta) / L]*E*A$ $P = [(12x10^{-6}*80*6000 - 1.2) / 6000] * 2x10^{5} * 314.16$ P = 47752.32 N or 47.75 kN		
6	Normal Stress, $\sigma = (\sigma_x + \sigma_y)/2 + (\sigma_x - \sigma_y)/2 * \cos 2\theta$ $\sigma = (50+80)/2 + (50-80)/2 * \cos(2*30)$ $\sigma = 65 + (-7.5) = 57.5 \text{ N/mm}^2$	6M	9 mins
	Shear stress, $\tau = (\sigma_x - \sigma_y)/2 * \sin 2\theta$ $\tau = (50-80)/2 * \sin(2*30) = -12.99 \text{ N/mm}^2$		

Resultant stress, $\sigma_r = \text{sqrt}(\sigma^2 + \tau^2)$ $\sigma_r = \text{sqrt}(57.5^2 + 12.99^2) = 58.95 \text{ N/mm}^2$

Part C

 $(2Q \times 5M = 10 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time for each Question
7	$As = \pi * 60^2 / 4 = 2827.43 \text{ mm}^2$	5M	9 mins
	Gradual Loading $\sigma = P/A = 195*1000 / 2827.43 = 68.97 \text{ N/mm}^2$		
	$\Delta L = PL/AE = 195*1000*3000 / (2827.43*2x10^5) = 1.0345 \text{ mm}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$\frac{Gradual\ Loading}{\sigma = 2*68.97 = 137.94\ N/mm^2}$		
	ΔL = 2*1.0345 = 2.069 mm		
8	$As = \pi * 18^2/4 = 254.5 \text{ mm}^2$	5M	12 mins
	$Ac = \pi^*(38^2 - 26^2)/4 = 603.18 \text{ mm}^2$:
	P = 35 kN		
	$P = P_S + P_C$ 35*1000 = $P_S + P_C \rightarrow (1)$		
	Now, Ps = (AsEs/AcEc)*Pc [From Deformation Condition]		
	$Ps = \frac{254.5 * 2 * 10^5}{603.18 * 1 * 10^5} Pc$ $Ps = 0.844 Pc$		
	Substituting in (1). 35000 = 0.844 Pc + Pc		
	Hence $Pc = 18980.5 \text{ N (or } 18.98 \text{ kN)}$		
	Substituting back in (1). Ps = 16019.52 N (or 16.02 kN)	i 1 1	
	Again. $P = Ps + Pc$		

$$35*1000 = \sigma_s A_s + \sigma_c A_c \rightarrow (2)$$

Also, $\sigma_s = (E_s / E_c) \sigma_c$

$$\sigma_s = (2*10^5/1*10^5) \ \sigma_c = 2* \ \sigma_c$$

Substituting above in (2)

$$35*1000 = 2* \sigma_c * 254.5 + \sigma_c * 603.18$$

So
$$\sigma_c = 35000 / 1112.18 = 31.5 \text{ Mpa}$$

Substituting back in (2)

$$35000 = \sigma_s *254.5 + 31.5*603.18$$

Hence $\sigma_s = 15999.83 / 254.5 = 62.87 \text{ Mpa}$

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem. 2019-20

Course Code: CIV 201

Course Name: STRENGTH OF MATERIALS

Program & Sem: B.Tech (CIV) & III

Date: 16.11.2019

Time: 2:30 PM to 3:30 PM

Max Marks: 40

Weightage: 20%

Instructions:

Read the question properly and answer accordingly.

II. Scientific and Non-programmable calculators are permitted.

Part A (Memory Recall Questions)

Answer all the Questions. Each Question carries four marks.

(3Qx4M=12M)

- 1. Write the statement for parallel axis and perpendicular axis theorem for calculating the moment of inertia. (C.O.NO.2) [Knowledge]
- 2. List the different types of structure support with number of support reactions.

(C.O.NO.3) [Knowledge]

3. Write the relationship between shear force, bending moment and rate of loading. (C.O.NO.3) [Knowledge]

Part B (Thought Provoking Questions)

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

4. A cantilever beam is subjected to three-point loads as shown in figure 1. Draw SFD and BMD. Also, locate the POC if any. (C.O.NO.1) [Application]

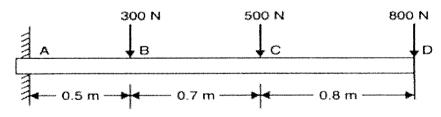
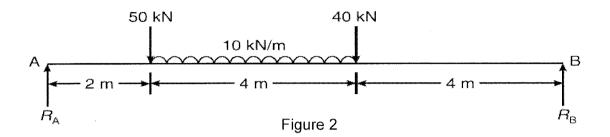



Figure 1

5. A simply supported beam is shown in figure 2. Calculate support reactions and draw SFD and BMD. Also, locate the POC if any. (C.O.NO.3) [Application]

Part C (Problem Solving Questions)

Answer the Question. The Question carry twelve marks.

(1Qx12M=12M)

6. Determine Centroid (\bar{x} and \bar{y}), and Moment of Inertia (I_x and I_y) for the figure 3: (C.O.NO 2)[Comprehension]

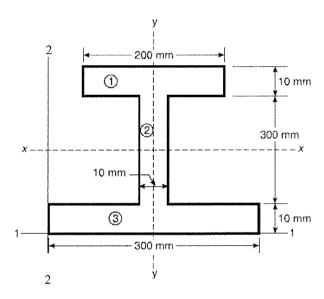


Figure 3

SCHOOL OF ENGINEERING

Sem and AY: Odd & 2019-20

Course Code: CIV201

Course Name: Strength of Materials Branch & Sem: B.Tech (Civil) & III

Date: 16/11/2019

Time: 1 hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma		ecall otted] _evels	prov [Mar	ks all	type otted]	olem So type rks allo	_	Total Marks
				K			С		Α		
1	2	2	4								4
2	3	3	4								4
3	3	3	4								4
4	3	3							8		8
5	3	3							8		8
6	2	2					12				12
	Total Marks		12				12		16		40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below-average students must be able to attempt, About 20% of the questions must be such that only above average students must

be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF ENGINEERING

SOLUTION

Sem and AY: Odd & 2019-20

Course Code: CIV201

Course Name: Strength of Material Branch & Sem: B.Tech (Civil) & III

Date: 16/11/2019

Time: 1 hour

Max Marks: 40

Weightage: 20%

Part A

 $(3Q \times 4M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. The time required for each Question
1		2 mark for each statement	5 mins
2	Simple support (1) Hinge support (2) Roller support (1) Fixed support (3)	1 mark for each support	3 mins
3	$\frac{dM}{dx} = V \text{ (Slope of BM= Shear force)}$ $\frac{dV}{dx} = w \text{ (Slope of SF= rate of loading)}$	2 mark for each relationship	3 mins

1 art D		
Q No Solution	Scheme of Marking	Max. Time required for each Question
300 N 500 N 800 N A B C D 1600 N F 500 N E 4 800 N Base line Base line C Base line C Base line C Base line A 2350 Nm B 1550 Nm A 2350 Nm	2 mark for support reactions, 3+3 for SFD and BMD	12 mins

B.M. diagram

 $(1Q \times 8M = 12 \text{ Marks})$

Q No	Solution Scheme of Marking	Max. Time required for each Question
6		15 mins

|--|

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: CIV 201

Course Name: STRENGTH OF MATERIALS

Program & Sem: B.Tech.(CIV) & III

Date: 23 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.(ii) Use of non-programmable scientific calculator is permitted

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 4 marks.

(5Qx4M=20M)

- 1. Define: (i) Young's Modulus (ii) Poisson's ratio (iii) Modulus of Rigidity (iv) Bulk Modulus (C.O.No.1) [Knowledge]
- 2. Write the moment of Inertia about horizontal and vertical centroidal axis for:
 - (i) Triangular section with base b and height h
 - (ii) Hollow circular section with internal dia. Di and external dia. Do

(C.O.No.2) [Knowledge]

3. Using standard notations, write the bending equation and explain the terms

(C.O.No.3) [Knowledge]

4. Define torsional stiffness and strength

(C.O.No.4) [Knowledge]

5. Differentiate between short and long columns

(C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

6. a) Draw the Shear Force Diagram and Bending Moment Diagram for the simply supported beam shown in Figure 6a. [5 M] (C.O.No.3) [Application]

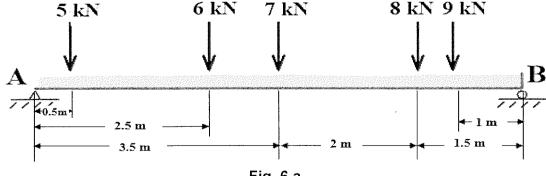
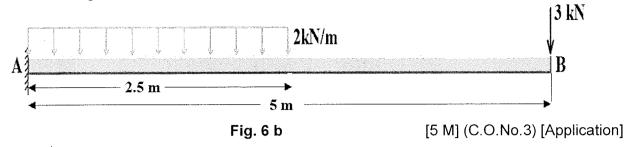
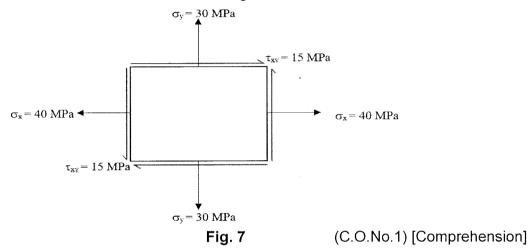




Fig. 6 a

b) Draw the Shear Force Diagram and Bending Moment Diagram for the cantilever beam shown in Figure 6b.

7. Determine the principal stresses, principal planes and maximum shearing stresses for an element subjected to state of stress as shown in Fig. 7

- 8. Determine the internal and external diameter required for a hollow circular shaft to transmit 10kW power at 150 rpm if the:
 - (i) maximum shear stress is not to exceed 100N/mm²
 - (ii) maximum twist is not to exceed 1.5° in a span of 4m

The internal diameter is 0.6 times the external diameter

(C.O.No.4) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks.

(2Qx15M=30M)

- 9. A simply supported beam 20 cm wide, 60 cm deep and 5m long is subjected to a UDL of 50 kN/m.
 - (i) Derive the bending equation used to compute the bending stresses.

[10 M]

(ii) Calculate the maximum bending stress in extreme fiber.

[5 M]

(C.O.No.3) [Application]

- 10. A 6m long steel column fixed at both ends is made up of a solid circular section of diameter 100mm.
 - i) Derive the formula to be used for computing the Euler's crippling load for the given column [7 M] (C.O.No.4) [Comprehension]
 - ii) Compute the slenderness ratio of the column

[3 M] (C.O.No.4) [Comprehension]

iii) Determine the safe compressive load that the column can carry, given $E = 2x10^5 \text{ N/mm}^2$ and Factor of safety = 3 [5 M] (C.O.No.4) [Comprehension]

GAIN MORE KNOWLEDGE

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Level K	Thought provoking type [Marks allotted] Bloom's Level	Problem Solving type [Marks allotted] Bloom's Level	Total Marks
1	CO1	Module 1	04			04
2	CO2	Module 2	04			04
3	CO3	Module 3	04			04
4	CO4	Module 4	04			04
5	CO4	Module 4	04			04
6	CO3	Module 3		10		10
7	CO1	Module 1		10		10
8	CO4	Module 4		10		10
9	CO3	Module 3		- 0.04g.1.46.4.C., d.	15	15
10	CO4	Module 4	:		15	15
	Total Ma	ırks	20	30	30	80

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Facu	lty	Si	gn	at	ur	e:
------	-----	----	----	----	----	----

Reviewer Comment:

SCHOOL OF ENGINEERING

SOLUTION

Semester: Odd Sem. 2019-20

Course Code: CIV 201

Course Name: Strength of Materials

Program & Sem: B.Tech (Civil), & III

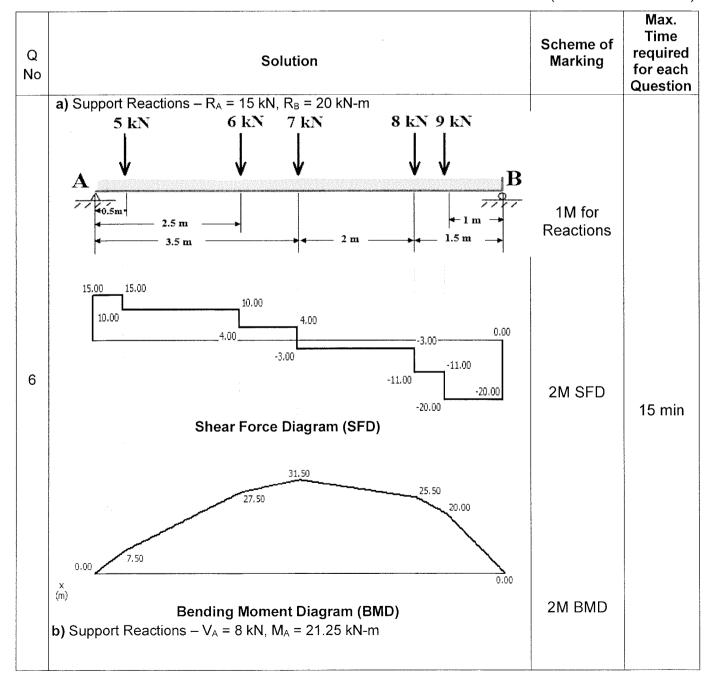
Date: 23 Dec 2019

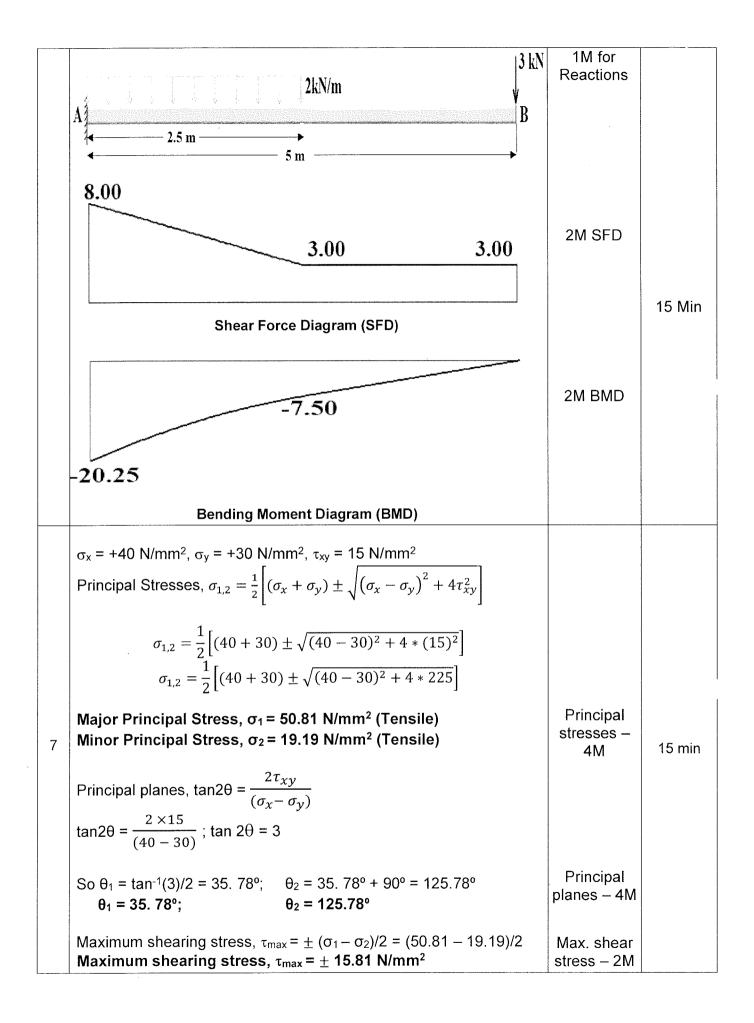
Time: 1:00 to 4:00 PM

Max Marks: 80

Weightage: 40%

Part A


 $(5Q \times 4M = 20Marks)$


Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	 (i) Young's Modulus is defined as the ratio of Stress to strain within the elastic limit. (ii) Poisson's ratio is the ratio of lateral strain to longitudinal strain. (iii) Modulus of Rigidity is defined as the ratio of shear stress to shear strain (iv) Bulk Modulus is the ratio of direct stress to volumetric strain when identical pressure is applied along three mutually perpendicular directions. 	01 Mark for each definition	05 Minutes
2.	 (i) Moment of Inertia of a triangle About horizontal centroidal axis, Ixx = bh³/36 About vertical centroidal axis, I_{YY} = hb³/36 (i) Moment of Inertia of hollow circular section About horizontal centroidal axis, Ixx = π (D_o ⁴ - Di⁴)/ 64 About vertical centroidal axis, I_{YY} = π (D_o ⁴ - Di⁴)/ 64 	1M 1M 1M 1M	05 Minutes
3.	M/I = f/y = E/R where M = Bending Moment I = Moment of Inertia f = Bending stress y = Distance from neutral axis E = Young's modulus R = Radius of curvature	Bending Equation/ expression - 1 M Explanation of notations - 3M	05 Minutes
4.	Torsional strength is defined as the torque required to produce unit shear stress. Torsional strength = (T/τ) = (J/R) = z Torsional strength = Polar Section Modulus Torsional stiffness or Torsional rigidity is defined as the torque required to produce unit angle of twist in unit length. Torsional stiffness = GJ		05 Minutes
5.	Short Columns Long Columns		05 Minutes

Column having length less than	Column having length less than	2 Marks for
12 times its width is called short	12 times its width is called short	each
column. L/d < 12	column. L/d > 12	difference
Columns having slenderness	Columns having slenderness	
ratio < 50	ratio > 50	(02 x 02 M)
Short columns are governed by	Long columns are governed by	
compression failure.	buckling failure.	
Rankine's formula is used to	Euler's formula is used to	
compute critical load of short	compute buckling load of long	
columns.	columns	

Part B

 $(3Q \times 10M = 30 \text{ Marks})$

	D 00D		
	$D_i = 0.6 D_O$ Power, P = 10kW = 10 x 10 ³ W		
	N = 150 rpm		
	$P = \frac{2 \pi N T}{60000}$		
	Torque, T = $\frac{60000 P}{2 \pi N}$		
	$T = \frac{60000 \times 10 \times 10^3}{2 \times \pi \times 150}$	2M for	
	$1 = \frac{1}{2 \times \pi \times 150}$	computing	:
	T = 636619.77 N-mm	Torque	
	i) Allowable shear stress, τ = 100 N/mm ²		
	Τ_ τ		
	$\frac{T}{J} = \frac{\tau}{R_O}$		
	$J = \pi (D_{O}^{4} - D_{i}^{4})/64 = \pi (D_{O}^{4} - 0.6^{4} D_{O}^{4})/64$ $J = 0.0427 D_{O}^{4}$		
	$\frac{J}{R_0} = \frac{T}{\tau}$		
		4M for	
	$\frac{0.0427 D_0^4}{D_0/2} = \frac{636619.77}{100} ; \frac{0.0853 D_0^4}{D_0} = 6366.97$	external and	
		internal	
8	$0.0853 D_{O}^{3} = 6366.197; D_{O}^{3} = 6366.197/0.0853$	diameter	25 Min
	$D_0^3 = 74642.09$	from shear stress	
	External Diameter, D _O = 42.1mm ≈ 43mm	condition	
	Internal Diameter, D _i = 0.6 * 43 = 25.8mm		
	ii) Allowable twist, $\theta = 1.5^{\circ} = 1.5 \text{ x } (\pi/180) = 0.02618 \text{ radians}$		
	L = 4m = 4000mm		
	$\frac{T}{J} = \frac{G \theta}{L}$	4M for	
	J L	external and	
	$J = \pi (D_0^4 - D_1^4)/64 = \pi (D_0^4 - 0.6^4 D_0^4)/64$	internal	
	$J = 0.0427 D_0^4$	diameter	
	$J = \frac{TL}{G \theta}$	from stiffness	
	$J = \frac{636619.77 \times 4000}{2} = 1215851.36 : 0.0427 \text{ D}_{\odot}^{4} = 1215851.36$	condition	
	$J = \frac{636619.77 \times 4000}{80 \times 10^{3} \times 0.02618} = 1215851.36; \ 0.0427 \ D_{O}^{4} = 1215851.36$	or from	
	$D_{O}^{4} = 1215851.36/0.0427$; $D_{O}^{4} = 28474270.63$; $D_{O} = (28474270.63)^{1/4}$	allowable twist	
	External Diameter, Do = 73.05mm ≈ 74mm Internal Diameter, D _i = 0.6 * 74 = 44.4mm		
	Hence, provide larger of the two diameters from shear stress and twist condition. D_o = 74mm, D_i = 44.4mm		
		1	

Q No	Solution	Scheme of Marking	Max. Time required for each Question
	Consider an elemental area δa at distance y from neutral axis in the beam, the cross-section of which is shown in Fig. 4.6. Fig. 4.6 Now stress f on this element is given by	Fig. – 2 M	
9	Force on this element = $f\delta a$ $= \frac{E}{R} y \delta a$ Moment of this resisting force about neutral axis $= \frac{E}{R} y \delta a y = \frac{E}{R} y^2 \delta a$ $\therefore \text{ Total moment of resistance } (M') \text{ of the cross-sectional area}$ $M' = \sum_{R} \frac{E}{R} y^2 \delta a$	4M	20 min
	From the definition of moment of inertia, which is second moment of area $J^{h \times u^d}$ $I = \sum y^2 \delta u$ where I is centroidal moment of inertia. $M' = \frac{E}{R}I$ For equilibrium moment of resistance (M') should be equal to applied moment M i.e. $M' = M$ Hence, we get $M = \frac{E}{R}I$ or $\frac{M}{I} = \frac{E}{R}$ or $\frac{M}{I} = \frac{E}{R}$ From equation 1 and 3 we can write the bending equation as $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$ where M — Bending moment I — Moment of inertia about centroidal axis f — Bending stress f — Bending stress f — Distance of the fibre from neutral axis f — Young's modulus f — Radius of curvature	4M	

	ii) Maximum bending stress in extreme fiber		
	Width of beam, B = 200mm		
	Depth of beam, D = 600mm		
	Length of beam, L = 5m = 5000mm		
	UDI, $w = 50kN/m$		
	Maximum B.M., $M_{max} = wL^2/8 = 50*5^2/8$	2M	15 Min
	$M_{max} = 156.25 \text{ kN-m}$	2101	
	Depth of N.A. from extreme fiber, $y_{max} = D/2 = 600/2 = 300$ mm		
	Moment of Inertia, $I = B*D^3/12 = (200*600^3)/12 = 3.6 \times 10^9 \text{ mm}^4$		
	The bending equation is given by, $\frac{f}{y} = \frac{M}{I} = \frac{E}{R}$		
	Bending stresses, $f_{max} = M_{max}.y/I$	3M	
	Bending stresses, $f_{\text{max}} = (156.25 * 10^6 * 300)/(3.6 \times 10^9)$		
	Bending stresses, f _{max} = 13.02 N/mm ²		
	i) Euler's Crippling Load for column with both ends fixed		
	Consider column AB of length I with fixed ends as shown in Fig Let end moment developed be M_0 . Now the bending moment at any point is given by		
	$EI\frac{d^2y}{dx^2} = M_0 - Py$		
	dx		
	$i.e. \qquad \frac{d^2y}{dx^2} + \frac{Py}{EI} = \frac{M_0}{EI}$		
	The solution of the above differential equation is		
	$y = C_1 \cos\left(x\sqrt{P/EI}\right) + C_2 \sin\left(x\sqrt{P/EI}\right) + \frac{M_0}{P}$	Fig. – 2M	
	$\frac{dy}{dx} = -C_1 \sqrt{P/EI} \sin(x \sqrt{P/EI}) + C_2 \sqrt{P/EI} \cos(x \sqrt{P/EI})$	Diff. Eq.	
	From condition $\frac{dy}{dx} = 0$ at $x > 0$.	and Soln. – 2M	
	we get $0 = C_2 \sqrt{P/EI}$		
	Since P cannot be zero, $C_3 = 0$		
	$\int \int dx = 0 \qquad y = 0$		20 min
10	$0 = C_1 + \frac{M_0}{R}$	Boundary	
	N N N N N N N N N N N N N N N N N N N	Cond. – 2M	
	$C_1 = -\frac{M_a}{P}$		
	$y = -\frac{M_0}{r}\cos(\sqrt{P/EI}) + \frac{M_0}{r^2}$		
	From the boundary condition $y = 0$ at $x = 1$, we get		
	1 / 1 N	Final	
	$O = -\frac{M_B}{P} \cos(i\sqrt{PEI}) + \frac{M_A}{P}$	expression - 1M	
	$\cos(I\sqrt{P/EI}) = 1$	1141	
	$\cos(\sqrt{P/EI}) = 1$ $i\sqrt{P/EI} = 0.2\pi.4\pi$		
	t A		
	Taking the least significant value we get		
	$t\sqrt{P/EI} = 2\pi$		
	$P = \frac{4\pi^2 EI}{I^2}$		
	, r		
L		1	

ii) Slenderr	ness ratio		
	th of Column, L = 6m = 6000mm		
Diam	eter of Column, D = 100mm		
Area o	of Column, $A = \pi^*D^2/4 = \pi^*100^2/4 = 7.85 \times 10^3 \text{ mm}^2$		
Mome	ent of Inertia, $I = \pi^*D^4/64 = \pi^*100^4/64 = 4.91 \times 10^6 \text{ mm}^4$		15 Min
Slende	erness ratio = L _e /k	Det. of	
Effective le	ength, L _e = (L/2) = (6000/2) = 3000mm (Both ends fixed) $k = \sqrt{\frac{I}{A}} = \sqrt{\frac{4.91 \times 10^6}{7.85 \times 10^3}}$	Effective Length, L _e – 1 M	
	k = 25mm	Det. of k – 1M	
Slendernes	as ratio = L_e/k as ratio = $(3000/25)$ as ratio = 120	Det. of slenderness ratio, k – 1M	
E = 2 x L _e = L/2 P _{cr} = π ²	empressive Load that the column can carry 10^5 N/mm ² , Factor of Safety, FOS = 3 $\frac{1}{2}$ (Both ends fixed) = $6000 / 2 = 3000$ mm $\frac{1}{2}$ EI/Le ² = π^2 *2 x 10^5 *4.91 x $10^6 / 3000^2 = 1076.88$ x 10^3 N or 1076.88 x 10^3 N or 1076.9 kN	Euler's Crippling Load – 3M	15 M in
	P _{cr} / FOS = 1076.9/3 : 358.97 kN	Safe Load - 2M	

-10742