Roll No. # PRESIDENCY UNIVERSITY **BENGALURU** ## SCHOOL OF ENGINEERING ### TEST 1 Sem & AY: Odd Sem. 2019-20 Date: 30.09.2019 Course Code: CSE 202 Time: 11:00AM to 12:00PM Course Name: DIGITAL DESIGN Max Marks: 40 Program & Sem: B.Tech & III Weightage: 20% #### Instructions: i. Write the Questions legibly ii. All Questions are compulsory. ## Part A [Memory Recall Questions] Answer all the Questions. Each Question carries five Marks. (2Qx5M=10M) 1. State and Prove De-Morgan's theorem (C.O.NO.1) [Knowledge] 2. Write HDL Code for the following Circuit shown in Fig. 01 (C.O.NO.1) [Application] # Part B [Thought Provoking Questions] Answer all the Questions. Each Question carries ten marks. (2Qx10M=20M) 3. By applying Boolean Algebra Theorems and Postulates. Minimize the following Boolean Expressions to a minimum number of Literals. (C.O.NO.1) [Comprehension] C. $$(x+y)(x'+z)(y+z)$$ d. $$(x+y)(x+y')$$ e. $xy+x'z+yz$ 4. For the following Boolean Function, obtain the simplified expression using K-MAP method. Also draw the logic diagram for the obtained Simplified expression. $$F(a,b,c,d) = \sum (0,1,5,7,8,10,14,15)$$ (C.O.NO.2) [Application] ### Part C [Problem Solving Questions] Answer the Question. The Question carries ten marks. (1Qx10M=10M) 5. Consider the following Boolean expression. (C.O.NO.2) [Application] $F(w,x,y,z) = \sum m(1,3,7,11,15) + d(0,2,5)$ Using K-Map method, obtain the simplified expression # **SCHOOL OF ENGINEERING** GAIN MORE KNOWLEGG Semester: 3rd Course Code: CSE 202 Course Name: Digital design Date: 30/09/2019 Time: 11:30 am to 12:30 pm Max Marks: 40 Marks Weightage: 20% # Extract of question distribution [outcome wise & level wise] | Q.NO | C.O.NO | Unit/Module
Number/Unit
/Module Title | [Ma | | 1 | prov
[Mar | ks all | type | olem So
type
urks allo
A | Total
Marks | |------|----------------|---|-----|----|---|--------------|--------|------|-----------------------------------|----------------| | 1 | 1 | Module-1 | | 5 | | | | | | 5 | | 2 | 1 | Module-1 | | | | | | | 5 | 5 | | 3 | 1 | Module-1 | | 10 | | | | | | 10 | | 4 | 2 | Module-2 | | | | | | | 10 | 10 | | 5 | 2 | Module-2 | | | | | | | 10 | 10 | | | Total
Marks | | | 15 | | | | | 25 | 40 | K =Knowledge Level C = Comprehension Level, A = Application Level Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt. [I hereby certify that All the questions are set as per the above guide lines. Mr. K Ramakrishna] Reviewers' Comments ### SCHOOL OF ENGINEERING ### **SOLUTION** .011010 Semester: 3rd sem Course Code: CSE 202 Course Name: Digital design **Date**: 30/09/2019 Time: 11:30 am to 12:30 pm Max Marks: 40 Marks Weightage: 20% Part A $(2Q \times 5 M = 10 Marks)$ | Q
No | Solution | Scheme of
Marking | Max. Time required for each Question | |---------|--|----------------------|--------------------------------------| | 1 | De Morgan's Theorem – There are two "de Morgan's" rules or theorems, | Complete
proof 5M | 5 Mins | | | (1) Two separate terms NOR'ed together is the same as the two terms inverted (Complement) and AND'ed for example: ("A + B") "'= " "A""B" - | | | | | (2) Two separate terms NAND'ed together is the same as the two terms inverted (Complement) and OR'ed for example: ("A . B") "'=" "A" "' + " "B" " | | | | PRESENTE & LANGUAGE, LA | | А | 8 | AB | Ā | B | $\overline{A} + \overline{B}$ | | | | |-------------------------|--|------------|------------|------------|---|----------|-------------------------------|---|-----------|--------| | | | О | 0 | 1 | 1 | 1 | 1 | - | | | | | The state of s | О | 1 | 1 | 1 | ·
· O | 1 | | | | | | | 1 | 0 | 1 | O | 1 | 1 | E | | | | | | 1 | 1 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | 2 | mo | dule eg2 | (a,b,c,x,y | ·); | | | | | Full Code | 5 Mins | | | 1 | out a,b,c; | | | | | | | 5M | | | | | tput x,y; | | | | | | | | | | | | re or_op1 | | ; ; | | | | | | | | | | g1(or_op | | | | | | | | | | | | g2(or_op | | | | | | | | | | | nor g13(x,c,or_op1); | | | | | | | | | | | | nand g4(y,or_op1,or_op2); | | | | | | | | | | | | enc | lmodule | | | | | | | | | Part B $(2Q \times 10 \text{ M} = 20 \text{ Marks})$ | 1 art D | (2Q X10 W -20 Walks) | | | | | |--|--|---|--|--|--| | Solution | Scheme of
Marking | Max. Time
required for
each Question | | | | | Simplify the following Boolean functions to a minimum number of fiterals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x - y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + vz(x + x')$ $= xy + x'z + vyz + x'yz$ $= xy(1 + z) + x'z(1 + y)$ $= xy + x'z$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4. | 2M for each correct answer | 10 Mins | | | | | $F(a,b,c,d) = \sum (0,1,5,7,8,10,14,15)$
Simplified expression: b'c'd' + a'c'd + bcd + acd' | K-map – 2M
Grouping –
2M | 15 Mins | | | | | | Simplify the following Boolean functions to a minimum number of literals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x - y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + vz(x + x')$ $= xy + x'z + vz + x'z$ $= xy(1 + z) + x'z(1 + y)$ $= xy + x'z$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4. | Simplify the following Boolean functions to a minimum number of literals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + yz + x'yz$ $= xy + x'z + yz + xy + x'z + yz$ $= xy + x'z.$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4. F(a,b,c,d) = $\sum (0,1,5,7,8,10,14,15)$ K-map - 2M Simplified expression: $\mathbf{b}^2\mathbf{c}^2\mathbf{d}^2 + \mathbf{a}^2\mathbf{c}^2\mathbf{d} + \mathbf{b}\mathbf{c}\mathbf{d} + \mathbf{a}\mathbf{c}^2$ Grouping - | | | | | Simplified | |---------------| | expression - | | 4M | | Correct logic | | diagram – 2M | Part C $(1Q \times 10 \text{ M} = 10 \text{ Marks})$ | Q No | Solution | Scheme of
Marking | Max. Time required for each Question | |------|---|---|--------------------------------------| | 5 | $F(w,x,y,z) = \sum m(1,3,7,11,15) + d(0,2,5)$ | K-map – 2M | 15 Mins | | | Ans: $yz + w'x'$ OR $yz + w'z$ | Grouping – 3M
Simplified
expression –
5M | | | Roll No. | | | | | | | | |----------|--|--|--|--|--|--|--| | | | | | | | | | # PRESIDENCY UNIVERSITY BENGALURU # **SCHOOL OF ENGINEERING** | TEST – 2 | | |--|---| | Sem & AY: Odd Sem 2019-20 | Date: 18.11.2019 | | Course Code: CSE 202 | Time: 11.00 AM to 12.00 PM | | Course Name: DIGITAL DESIGN | Max Marks: 40 | | Program & Sem: B.Tech (CSE/CCE/ISE/IST) & III | Weightage: 20% | | Instructions: | | | i. Write the Questions legibly. | | | ii. All Questions are compulsory. | | | Part A [Memory Recall C | Questions] | | Answer all the Questions. Each sub Question ca | rries one mark. (10Qx1M=10M) | | 1. Fill in the blanks: | | | a) If A, B and C are the inputs of a full adder the | n the sum is given by | | | (C.O.NO.2)[Knowledge] | | | | | b) In a multiplexer, the selection of a particular i | • | | | (C.O.NO.2)[Knowledge] | | c) In 1-to-4 multiplexer, C1 and C2 are select lin | | | output will be
d) technique will be used to convert a h | (C.O.NO.2)[Knowledge] | | one | (C.O.NO.2)[Knowledge] | | e) , and number of AND, OR a | , ,, | | required for the configuration of a FULL-ADD | | | f) In octal to binary encoder, number of | , | | · · · · · · · · · · · · · · · · · · · | (C.O.NO.2)[Knowledge] | | g) gate can be used as a Basic compara | itor (C.O.NO.2)[Knowledge] | | h) For binary number 1010, is the ed | | | | (C.O.NO.2)[Knowledge] | | i) In QM method, are examined to g | get for a particular | | expression that avoids any type of duplication | | | j) combinational circuit is also know | | | | (C.O.NO.2)[Knowledge] | ### Part B [Thought Provoking Questions] ### Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M) 2. Explain the working of 8:1 MUX. Construct 8:1 MUX using only 2:1 Mux. (C.O.NO.2)[Comprehension] 3. Design a combinational circuit to convert the given 4-bit BCD code to Excess-3 code. Write the Truth Table, Boolean expressions and Logic diagram for the same. (C.O.NO.2)[Comprehension] ### Part C [Problem Solving Questions] Answer the Question. The Question carry fourteen marks. (1Qx14M=14M) 4. List the steps involved in determining prime implicants in Quine McClusky Method. Using Quine McClusky Method, obtain the simplified expression for the following Boolean function: (C.O.NO.2)[Application] $$Y = F(A, B, C) = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} BC + A\overline{B}C$$ ## **SCHOOL OF ENGINEERING** GAIN MORE KNOWLEDGE BAIN MORE KNOWLEDGE STAL H GREATER HEIGHTS Semester: III Course Code: CSE 202 Course Name: Digital design Date: 18/11/2019 Time: 1 Hour Max Marks: 40 Marks Weightage: 20% ### Extract of question distribution [outcome wise & level wise] | Q.NO | C.O.NO | Unit/Module
Number/Unit
/Module Title | Bloom's Levels | | | | Problem Solving type [Marks allotted] | | Total
Marks | | | | |------|----------------|---|----------------|----|---|--|---------------------------------------|--|----------------|----|--|----| | | | | K | | С | | Α | | | | | | | 1 | CO 2 | Module-2 | | 10 | | | | | | | | 10 | | 2 | CO 2 | Module-2 | | | | | 8 | | | | | 8 | | 3 | CO 2 | Module-2 | | | | | 8 | | | | | 8 | | 4 | CO 2 | Module-2 | | | | | | | | 14 | | 14 | | | Total
Marks | | | 10 | | | 16 | | | 14 | | 40 | K =Knowledge Level C = Comprehension Level, A = Application Level Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt. # **SCHOOL OF ENGINEERING** # **SOLUTION** **Date**: 18/11/2019 Time: 1 Hour Max Marks: 40 Marks Weightage: 20% Semester: III Course Code: CSE 202 Course Name: Digital design ## Part A ## (10 Q x1 M = 10 Marks) | Solution | Scheme of
Marking | Max. Time required for each Question | |---|---|---| | A) A XOR B XOR C B) SELECT LINES C) Y3 (4th input line) | Each correct
answer
carries 1M | 10 Mins | | D) MEV
E) 2,1,2 | | | | F) 3
G) XOR | | | | H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME | | | | IMPLICANT J) DEMUX | | | | | A) A XOR B XOR C B) SELECT LINES C) Y3 (4 th input line) D) MEV E) 2,1,2 F) 3 G) XOR H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME IMPLICANT | A) A XOR B XOR C B) SELECT LINES C) Y3 (4 th input line) D) MEV E) 2,1,2 F) 3 G) XOR H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME IMPLICANT | | Q
No | | Solution | | Scheme of
Marking | Max. Time
required for
each
Question | |---------|--|-----------------------------------|--------------------|---------------------------------------|---| | 2 | Explanation of 8:1 MUX of Construct 8:1 MUX using | Explanation with block diagram 3M | 15 Mins | | | | | d0 — 2:1 MUX — s0 d2 — 2:1 MUX — s0 d4 — 2:1 MUX — s0 d6 — 2:1 MUX — s0 d6 — 2:1 MUX — s0 s0 | 2:1MUX
s1 | 2:1MI

 s2 | y | | | 3 | Design a combinational code to Excess-3 code. expressions and Logic of | Write the Truth | Table, Boole | 4-bit BCD ean Boolean expressions: 4M | 15 Mins | | | Input BCD | Output Ex | cess-3 Code | | | | | A B C D | W X | y z | | | | | | () ()
() [
() [| | Truth Table
4M | | | ı | | () 1
() 1
1 () | | | | | | 1 1 1 1 | 1 17 | () | | | | | | 1 () | | | | Fig. 4-3 Maps for BCD to Excess-3 Code Converter $$z = D'; y = CD + C'D' = CD + (C + D)'$$ $x = B'C + B'D + BC'D' = B'(C + D) + B(C + D)'$ $w = A + BC + BD = A + B(C + D)$ | Q No | Solution | Scheme of
Marking | Max. Time required for each Question | |------|---|---|--------------------------------------| | 4 | Steps involved Determination of Prime Implicants | | | | | • In Stage 1 of the process, to find out all the terms that gives output 1 from truth table and put them in different groups depending on how many 1s input variable combinations (ABCD) have. | Steps Involved:
5M
PI Table
4M | 15 Mins | | | For example, first group has no l in input
combination, second group has only one 1, third two
l s, fourth three ls and fifth four 1s. | 711 | | | | • In Stage 2, we first try to combine first and second group of Stage I, on a member to member basis. | EPI Table
3M | | | | • The rule is to see if only one binary digit is differing between two members and we mark that position by '-'. This means corresponding variable is not required to represent those members. | Correct
simplified
expression
2M | | | | • Thus (0) of first group combines with (1) of second group to form (0,1) in Stage 2 and can be represented by | | | | | A'B'C' (0 0 0 -). | | | | | Proceed in the same manner to find rest of the
combinations in successive groups of Stage 1 and
table them as in figure. | | | | | Note that, we need not look beyond successive
groups to find such combinations as groups that are
not adjacent, differ by more than one binary digit. Also note that each combination of Stage 2 can be
represented by three literals. | | | | | • All the members of particular stage, which finds itself in at least one combination of next stage are tick (√) marked. This is followed for Stage 1 terms as well as terms of other stages. | | | | | | | | | | | | - | ***** | TRE was | - | **** | |----------|---------|----|-----|-------|---------|-------|------| | Y = F(x) | A, B, C | =A | B C | + A | BC+ | ABC + | ABC | | A | В | C | Y | |----------|---|---|-------| | <u> </u> | 0 | 0 | 1 | | 0 | 0 | 1 | - 1,- | | 10 | l | 0 | 0 | | 1.0 | 1 | 1 | Į. | | - [] | 0 | 0 | 0 | | | () | 1 | 1 | | 1 | *************************************** | 0 | 0 | | 1 | ŧ | | 0 | | Stage 1 | | | Stage | | . 0 | 1 | 3 | 5 | | |------------|------------|------------|------------|------------------|----------------|-----------|----------------|-------------------------------|--------------------| | ABC | | · | ABC | | A'B' | $\sqrt{}$ | v ^t | adaga and kandida ang mga ata | ak ne kanesaaniyke | | 000 | (0) | v. | 00- | (0, 1) | A'C | | V | √ | | | 001 | (1) | V | 0-1
-01 | (1, 3)
(1, 5) | <i>B'C</i> | • | 1 | | 1 | | 011
101 | (3)
(5) | √.:
√.: | | (112) | All an $Y = A$ | | | | 'C | Prime implicants only from stage 2 They are: 00-(A'B'), 0-1 (A'C) and -01 (B'C) | Roll No | | | | | | | | |---------|--|---|---|-----|---|--|--| | | | i | i | l . | ĺ | | | # PRESIDENCY UNIVERSITY BENGALURU ### SCHOOL OF ENGINEERING ### **END TERM FINAL EXAMINATION** Semester: Odd Sem: 2019 - 20 Course Code: CSE 202 Course Name: DIGITAL DESIGN Program & Sem: B.Tech, (CSE/IST/ISE/CCE) & III Date: 24 December 2019 Time: 1:00 PM to 4:00 PM Max Marks: 80 Weightage: 40% #### Instructions: (i) Read the all questions carefully and answer accordingly. (ii) Question paper consists of 3 parts. ### Part A [Memory Recall Questions] ## Answer all the Questions. Each Question carries 1 mark. (15Qx1M=15M)1. (i). How many variables will be eliminated by an octet in a 4 variable K Map? (C.O.No.1) [Knowledge] (ii). A single variable within a term which may or may not be complemented is known as ---(C.O.No.1) [Knowledge] (iii). 'n' variables can be combined to form ----- number of minterms. (C.O.No.1) [Knowledge] (iv), Sum-of-minterms form of F(A,B,C) = AB' + B'C is ----- (C.O.No.1) [Knowledge] (v). ---- is used to increase the effective size of K MAP by writing output in terms of (C.O.No.1) [Knowledge] input. (vi). How many half adder(s) and OR gate(s) are required to implement a full adder? (C.O.No.2) [Knowledge] (vii). Octal-to-Binary conversion is an application of ----- circuit. (C.O.No.2) [Knowledge] (viii). Excess-3 code for the BCD '1001' is -----(C.O.No.2) [Knowledge] (ix). A 16 ×1 Multiplexer can be constructed with two ----- and one ----- multiplexers (C.O.No.2) [Knowledge] (x). Decoder with enable input can function as a ------(C.O.No.2) [Knowledge] (xi). A connection from the output of one gate to the input of a second gate whose output forms part of the input to the first gate is called -----(C.O.No.3) [Knowledge] (xii). Latches are built from ----- and flip flops are built from -----(C.O.No.3) [Knowledge] (xiji). Which flip flop descriptor is used for the design of sequential circuits? (C.O.No.3) [Knowledge] (xiv). How many unique data patterns are generated by a 4-bit Johnson counter? (C.O.No.3) [Knowledge] (xv). What is the characteristic equation of T flip flop? (C.O.No.3) [Knowledge] ### Part B [Thought Provoking Questions] ### Answer all the Questions. Each Question carries 11 marks. (3Qx11M=33M) 2. Implement the given Boolean function with 4 ×1 multiplexer and external gates. $$F(A,B,C,D) = \sum m$$ (3, 5, 6, 13, 14, 15) (C.O.No.2) [Application] 3. Give the simplest logic circuit for following logic equation after the simplification using K Map. *d* represents don't-care condition. $$F(A,B,C,D) = \sum m(4, 5, 7, 8, 10, 13) + d(0, 1, 2, 9, 12)$$ (C.O.No.2) [Comprehension] 4. Analyze the given circuit and obtain the state transition diagram. (C.O.No.3) [Comprehension] Part C [Problem Solving Questions] ### Answer both the Questions. Each Question carries 16 marks. (2Qx16M=32M) 5. Write a Verilog code for the given circuit. Also simplify the expression for outputs using Boolean algebra. (C.O.No.1) [Comprehension] 6. List the steps for designing synchronous sequential circuits. Design a 3-bit synchronous binary down counter using T flip flop. (C.O.No.3) [Application] # GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS ### **SCHOOL OF ENGINEERING** #### **END TERM FINAL EXAMINATION** ### Extract of question distribution [outcome wise & level wise] | Q.NO | C.O.NO
(% age
of CO) | Unit/Module
Number/Unit
/Module Title | Memory recall type [Marks allotted] Bloom's Levels | | Problem Solving type [Marks allotted] | Total
Marks | |----------------------|----------------------------|---|--|-----------------------|---------------------------------------|----------------| | therenge
getred f | n gal | | K | C | A | | | 1 | 1,2,3 | 1,2,3 | 15 | - · · · · | 6 - 1 | 15 | | 2 | 2 | 2 | YTX TEE | estuara. Income | 11 | 11 | | 3 | 2 | 2 | - | 11 | VOM - N | 11 | | 4 | 3 | 3 | | 11 | vii. Encod | 11 | | 5 | 1 | 1 | - | 16 | J. 18 30 - | 16 | | 6 | 3 . | 3 | - | nexcipii
ack palis | 16 | 16 | | | Total Ma | ırks | 15 | 38 | 27 | 80 | K = Knowledge Level C = Comprehension Level, A = Application Level Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt. I hereby certify that all the questions are set as per the above guidelines. Faculty Signature: SHIMIL SHITO Reviewer Commend: ## **Format of Answer Scheme** ## **SCHOOL OF ENGINEERING** ### **SOLUTION** Semester: Odd Sem. 2019-20 Date: 24.12.2019 Course Code: CSE 202 Time: 3 HRS Course Name: **DIGITAL DESIGN** Max Marks: 80 Program & Sem: B.TECH, III CSE/IST/ISE/CCE Weightage: 40% ### Part A $(15Q \times 1M = 15Marks)$ | Q No | | Solution | Scheme of Marking | Max. Time required for each Question | |------|---|---|---------------------|--------------------------------------| | 1 | i. ii. iii. iv. v. vi. viii. ix. x. xi. xii. xi | Literal 2 ⁿ AB'C + AB'C' + A'B'C MEV Technique 2, 1 Encoder 1100 8 × 1, 2×1 Demultiplexer Feedback path Logic gates, Latches Excitation table 8 Q _{n+1} = Q _n T' + Q _n 'T | 15Q × 1M = 15 Marks | 20 mins | ### Part B $(3Q \times 11M = 33 \text{ Marks})$ | Q No | Solution | Scheme of Marking | Max. Time required for each Question | |------|--|---|--------------------------------------| | 2 | A B C D F MAP ENTRY | TRUTH TABLE -2M | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | GROUPING – 2M MAP ENTRY EXPRESSION = 4M | 30 mins | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | LOGIC DIAGRAM -
3M | | | 4. | $A(t + 1) = D_A$
$B(t + 1) = D_B$
$y = (A + B) x^2$ | = A'x | | | Boolean Expression - 3M State Table - 4M | 30 mins | |----|---|--------|---------------|-----------|---|---------| | | Present
State | Input | Next
State | Output | State Diagram - 4M
(3 + 4 + 4 = 11M) | | | | A B | * | A B | <i>Y</i> | | | | | 0 0 | () | 0 U | () | | | | | 0 1 | n
1 | () ()
[[| 1 | | | | | 1 () | K.) | () ()
[() | 0 | | | | | 3000 SOOR | () | 0 0 | 1 | | | | | 1/0 | 0/1 | 1/0 | | | | ### Part C $(2Q \times 16M = 32Marks)$ | | · • • • • • • • • • • • • • • • • • • • | , . | | |------|---|---------------------------|--------------------------------------| | Q No | Solution | Scheme of Marking | Max. Time required for each Question | | 5. | Verilog Code
module ckt(a,b,c,x,y);
input a.b.c; | Verilog Code – 6M | | | | output x,y; | Expression for x -5M | | | | wire g1_out,g2_out,g3_out;
and g1(g1_out,a,b);
nor g2(g2_out,b,c); | Expression for y -5M | 35 mins | | | nand g3(g3_out,g1_out,g2_out); or g4(x,g1_out,g3_out); and g5(y,g2_out,g3_out); endmodule | (6 + 5 + 5 = 16
Marks) | | | | = (a
= 1
y = ((
= (a
= (a
= (a)
= (a) | (a.b) + (b+c) (a.b) (a.b)' + (a.b)' (ba' + b') (b'c' + a' + 1) | (b + c)
(b+c))
+c)'
(b'.c')
b'c' | · (b+c) | ·c)' | | | | | | | |----|---|--|--|---------|--------------------|----|--------|------|--|---------|--| | 6. | Design Procedure 1. From the word description and specifications of the desired operation, derive a state diagram for the circuit. 2. Reduce the number of states if necessary. 3. Assign binary values to the states. 4. Obtain the binary-coded state table. 5. Choose the type of flip-flops to be used. 6. Derive the simplified flip-flop input equations and output equations. 7. Draw the logic diagram. | | | | | | | | Design Procedure – 5M State Diagram – 2M State Table – 3M K Map & Expression – 3M Logic Diagram – 3M (5 +2 + 3 + 3 + 3 = 16M) | 35 mins | | | | A 0 | PS | 100 | 40 | NS | 10 | | NPUT | | | | | | A2 A1 A0 A2 A1 A0 T2 T1 T0 | | | | | | | | | | | | | 1 1 0 1 0 1 | | | | | | | | | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | | | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 1 | | | | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | T2 = | A' ₁ A' ₀ , | T1 = | = A ₀ ' | , | Γ0 = 1 | | | | |