

Roll No.

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Date: 30.09.2019

Course Code: CSE 202

Time: 11:00AM to 12:00PM

Course Name: DIGITAL DESIGN

Max Marks: 40

Program & Sem: B.Tech & III

Weightage: 20%

Instructions:

i. Write the Questions legibly

ii. All Questions are compulsory.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries five Marks.

(2Qx5M=10M)

1. State and Prove De-Morgan's theorem

(C.O.NO.1) [Knowledge]

2. Write HDL Code for the following Circuit shown in Fig. 01 (C.O.NO.1) [Application]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries ten marks. (2Qx10M=20M)

3. By applying Boolean Algebra Theorems and Postulates. Minimize the following Boolean Expressions to a minimum number of Literals.

(C.O.NO.1) [Comprehension]

C.
$$(x+y)(x'+z)(y+z)$$

d.
$$(x+y)(x+y')$$
 e. $xy+x'z+yz$

4. For the following Boolean Function, obtain the simplified expression using K-MAP method. Also draw the logic diagram for the obtained Simplified expression.

$$F(a,b,c,d) = \sum (0,1,5,7,8,10,14,15)$$

(C.O.NO.2) [Application]

Part C [Problem Solving Questions]

Answer the Question. The Question carries ten marks.

(1Qx10M=10M)

5. Consider the following Boolean expression.

(C.O.NO.2) [Application]

 $F(w,x,y,z) = \sum m(1,3,7,11,15) + d(0,2,5)$

Using K-Map method, obtain the simplified expression

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEGG

Semester: 3rd

Course Code: CSE 202

Course Name: Digital design

Date: 30/09/2019

Time: 11:30 am to 12:30 pm

Max Marks: 40 Marks

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma		1	prov [Mar	ks all	type	olem So type urks allo A	Total Marks
1	1	Module-1		5						5
2	1	Module-1							5	5
3	1	Module-1		10						10
4	2	Module-2							10	10
5	2	Module-2							10	10
	Total Marks			15					25	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Mr. K Ramakrishna]

Reviewers' Comments

SCHOOL OF ENGINEERING

SOLUTION

.011010

Semester: 3rd sem

Course Code: CSE 202

Course Name: Digital design

Date: 30/09/2019

Time: 11:30 am to 12:30 pm

Max Marks: 40 Marks

Weightage: 20%

Part A

 $(2Q \times 5 M = 10 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	De Morgan's Theorem – There are two "de Morgan's" rules or theorems,	Complete proof 5M	5 Mins
	(1) Two separate terms NOR'ed together is the same as the two terms inverted (Complement) and AND'ed for example: ("A + B") "'= " "A""B" -		
	(2) Two separate terms NAND'ed together is the same as the two terms inverted (Complement) and OR'ed for example: ("A . B") "'=" "A" "' + " "B" "		

PRESENTE & LANGUAGE, LA		А	8	AB	Ā	B	$\overline{A} + \overline{B}$			
		О	0	1	1	1	1	-		
	The state of the s	О	1	1	1	· · O	1			
		1	0	1	O	1	1	E		
		1	1	0	0	0	0			
2	mo	dule eg2	(a,b,c,x,y	·);					Full Code	5 Mins
	1	out a,b,c;							5M	
		tput x,y;								
		re or_op1		; ;						
		g1(or_op								
		g2(or_op								
	nor g13(x,c,or_op1);									
	nand g4(y,or_op1,or_op2);									
	enc	lmodule								

Part B

 $(2Q \times 10 \text{ M} = 20 \text{ Marks})$

1 art D	(2Q X10 W -20 Walks)				
Solution	Scheme of Marking	Max. Time required for each Question			
Simplify the following Boolean functions to a minimum number of fiterals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x - y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + vz(x + x')$ $= xy + x'z + vyz + x'yz$ $= xy(1 + z) + x'z(1 + y)$ $= xy + x'z$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4.	2M for each correct answer	10 Mins			
$F(a,b,c,d) = \sum (0,1,5,7,8,10,14,15)$ Simplified expression: b'c'd' + a'c'd + bcd + acd'	K-map – 2M Grouping – 2M	15 Mins			
	Simplify the following Boolean functions to a minimum number of literals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x - y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + vz(x + x')$ $= xy + x'z + vz + x'z$ $= xy(1 + z) + x'z(1 + y)$ $= xy + x'z$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4.	Simplify the following Boolean functions to a minimum number of literals. 1. $x(x' + y) = xx' + xy = 0 + xy = xy$. 2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$. 3. $(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$. 4. $xy + x'z + yz = xy + x'z + yz + x'yz$ $= xy + x'z + yz + xy + x'z + yz$ $= xy + x'z.$ 5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$, by duality from function 4. F(a,b,c,d) = $\sum (0,1,5,7,8,10,14,15)$ K-map - 2M Simplified expression: $\mathbf{b}^2\mathbf{c}^2\mathbf{d}^2 + \mathbf{a}^2\mathbf{c}^2\mathbf{d} + \mathbf{b}\mathbf{c}\mathbf{d} + \mathbf{a}\mathbf{c}^2$ Grouping -			

Simplified
expression -
4M
Correct logic
diagram – 2M

Part C

 $(1Q \times 10 \text{ M} = 10 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$F(w,x,y,z) = \sum m(1,3,7,11,15) + d(0,2,5)$	K-map – 2M	15 Mins
	Ans: $yz + w'x'$ OR $yz + w'z$	Grouping – 3M Simplified expression – 5M	

Roll No.							

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST – 2	
Sem & AY: Odd Sem 2019-20	Date: 18.11.2019
Course Code: CSE 202	Time: 11.00 AM to 12.00 PM
Course Name: DIGITAL DESIGN	Max Marks: 40
Program & Sem: B.Tech (CSE/CCE/ISE/IST) & III	Weightage: 20%
Instructions:	
i. Write the Questions legibly.	
ii. All Questions are compulsory.	
Part A [Memory Recall C	Questions]
Answer all the Questions. Each sub Question ca	rries one mark. (10Qx1M=10M)
1. Fill in the blanks:	
a) If A, B and C are the inputs of a full adder the	n the sum is given by
	(C.O.NO.2)[Knowledge]
b) In a multiplexer, the selection of a particular i	•
	(C.O.NO.2)[Knowledge]
c) In 1-to-4 multiplexer, C1 and C2 are select lin	
output will be d) technique will be used to convert a h	(C.O.NO.2)[Knowledge]
one	(C.O.NO.2)[Knowledge]
e) , and number of AND, OR a	, ,,
required for the configuration of a FULL-ADD	
f) In octal to binary encoder, number of	, , , , , , , , , , , , , , , , , , , ,
· · · · · · · · · · · · · · · · · · ·	(C.O.NO.2)[Knowledge]
g) gate can be used as a Basic compara	itor (C.O.NO.2)[Knowledge]
h) For binary number 1010, is the ed	
	(C.O.NO.2)[Knowledge]
i) In QM method, are examined to g	get for a particular
expression that avoids any type of duplication	
j) combinational circuit is also know	
	(C.O.NO.2)[Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

2. Explain the working of 8:1 MUX. Construct 8:1 MUX using only 2:1 Mux.

(C.O.NO.2)[Comprehension]

3. Design a combinational circuit to convert the given 4-bit BCD code to Excess-3 code. Write the Truth Table, Boolean expressions and Logic diagram for the same.

(C.O.NO.2)[Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carry fourteen marks.

(1Qx14M=14M)

4. List the steps involved in determining prime implicants in Quine McClusky Method.

Using Quine McClusky Method, obtain the simplified expression for the following Boolean function: (C.O.NO.2)[Application]

$$Y = F(A, B, C) = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} BC + A\overline{B}C$$

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEDGE BAIN MORE KNOWLEDGE STAL H GREATER HEIGHTS

Semester: III

Course Code: CSE 202

Course Name: Digital design

Date: 18/11/2019

Time: 1 Hour

Max Marks: 40 Marks

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Bloom's Levels				Problem Solving type [Marks allotted]		Total Marks			
			K		С		Α					
1	CO 2	Module-2		10								10
2	CO 2	Module-2					8					8
3	CO 2	Module-2					8					8
4	CO 2	Module-2								14		14
	Total Marks			10			16			14		40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF ENGINEERING

SOLUTION

Date: 18/11/2019

Time: 1 Hour

Max Marks: 40 Marks

Weightage: 20%

Semester: III

Course Code: CSE 202

Course Name: Digital design

Part A

(10 Q x1 M = 10 Marks)

Solution	Scheme of Marking	Max. Time required for each Question
A) A XOR B XOR C B) SELECT LINES C) Y3 (4th input line)	Each correct answer carries 1M	10 Mins
D) MEV E) 2,1,2		
F) 3 G) XOR		
H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME		
IMPLICANT J) DEMUX		
	A) A XOR B XOR C B) SELECT LINES C) Y3 (4 th input line) D) MEV E) 2,1,2 F) 3 G) XOR H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME IMPLICANT	A) A XOR B XOR C B) SELECT LINES C) Y3 (4 th input line) D) MEV E) 2,1,2 F) 3 G) XOR H) 1111 I) PRIME IMPLICANT, ESSENTIAL PRIME IMPLICANT

Q No		Solution		Scheme of Marking	Max. Time required for each Question
2	Explanation of 8:1 MUX of Construct 8:1 MUX using	Explanation with block diagram 3M	15 Mins		
	d0 — 2:1 MUX — s0 d2 — 2:1 MUX — s0 d4 — 2:1 MUX — s0 d6 — 2:1 MUX — s0 d6 — 2:1 MUX — s0 s0	2:1MUX s1	2:1MI s2	y	
3	Design a combinational code to Excess-3 code. expressions and Logic of	Write the Truth	Table, Boole	4-bit BCD ean Boolean expressions: 4M	15 Mins
	Input BCD	Output Ex	cess-3 Code		
	A B C D	W X	y z		
		() () () [() [Truth Table 4M	
ı		() 1 () 1 1 ()			
	1 1 1 1	1 17	()		
		1 ()			

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

$$z = D'; y = CD + C'D' = CD + (C + D)'$$

 $x = B'C + B'D + BC'D' = B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Steps involved Determination of Prime Implicants		
	• In Stage 1 of the process, to find out all the terms that gives output 1 from truth table and put them in different groups depending on how many 1s input variable combinations (ABCD) have.	Steps Involved: 5M PI Table 4M	15 Mins
	 For example, first group has no l in input combination, second group has only one 1, third two l s, fourth three ls and fifth four 1s. 	711	
	• In Stage 2, we first try to combine first and second group of Stage I, on a member to member basis.	EPI Table 3M	
	• The rule is to see if only one binary digit is differing between two members and we mark that position by '-'. This means corresponding variable is not required to represent those members.	Correct simplified expression 2M	
	• Thus (0) of first group combines with (1) of second group to form (0,1) in Stage 2 and can be represented by		
	A'B'C' (0 0 0 -).		
	 Proceed in the same manner to find rest of the combinations in successive groups of Stage 1 and table them as in figure. 		
	 Note that, we need not look beyond successive groups to find such combinations as groups that are not adjacent, differ by more than one binary digit. Also note that each combination of Stage 2 can be represented by three literals. 		
	• All the members of particular stage, which finds itself in at least one combination of next stage are tick (√) marked. This is followed for Stage 1 terms as well as terms of other stages.		

			-	*****	TRE was	-	****
Y = F(x)	A, B, C	=A	B C	+ A	BC+	ABC +	ABC

A	В	C	Y
<u> </u>	0	0	1
0	0	1	- 1,-
10	l	0	0
1.0	1	1	Į.
- []	0	0	0
	()	1	1
1	***************************************	0	0
1	ŧ		0

Stage 1			Stage		. 0	1	3	5	
ABC		·	ABC		A'B'	$\sqrt{}$	v ^t	adaga and kandida ang mga ata	ak ne kanesaaniyke
000	(0)	v.	00-	(0, 1)	A'C		V	√	
001	(1)	V	0-1 -01	(1, 3) (1, 5)	<i>B'C</i>	•	1		1
011 101	(3) (5)	√.: √.:		(112)	All an $Y = A$				'C

Prime implicants only from stage 2
They are:

00-(A'B'), 0-1 (A'C) and -01 (B'C)

Roll No							
		i	i	l .	ĺ		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Sem: 2019 - 20

Course Code: CSE 202

Course Name: DIGITAL DESIGN

Program & Sem: B.Tech, (CSE/IST/ISE/CCE) & III

Date: 24 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Question paper consists of 3 parts.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 1 mark. (15Qx1M=15M)1. (i). How many variables will be eliminated by an octet in a 4 variable K Map? (C.O.No.1) [Knowledge] (ii). A single variable within a term which may or may not be complemented is known as ---(C.O.No.1) [Knowledge] (iii). 'n' variables can be combined to form ----- number of minterms. (C.O.No.1) [Knowledge] (iv), Sum-of-minterms form of F(A,B,C) = AB' + B'C is ----- (C.O.No.1) [Knowledge] (v). ---- is used to increase the effective size of K MAP by writing output in terms of (C.O.No.1) [Knowledge] input. (vi). How many half adder(s) and OR gate(s) are required to implement a full adder? (C.O.No.2) [Knowledge] (vii). Octal-to-Binary conversion is an application of ----- circuit. (C.O.No.2) [Knowledge] (viii). Excess-3 code for the BCD '1001' is -----(C.O.No.2) [Knowledge] (ix). A 16 ×1 Multiplexer can be constructed with two ----- and one ----- multiplexers (C.O.No.2) [Knowledge] (x). Decoder with enable input can function as a ------(C.O.No.2) [Knowledge] (xi). A connection from the output of one gate to the input of a second gate whose output forms part of the input to the first gate is called -----(C.O.No.3) [Knowledge] (xii). Latches are built from ----- and flip flops are built from -----(C.O.No.3) [Knowledge]

(xiji). Which flip flop descriptor is used for the design of sequential circuits?

(C.O.No.3) [Knowledge]

(xiv). How many unique data patterns are generated by a 4-bit Johnson counter?

(C.O.No.3) [Knowledge]

(xv). What is the characteristic equation of T flip flop?

(C.O.No.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 11 marks.

(3Qx11M=33M)

2. Implement the given Boolean function with 4 ×1 multiplexer and external gates.

$$F(A,B,C,D) = \sum m$$
 (3, 5, 6, 13, 14, 15)

(C.O.No.2) [Application]

3. Give the simplest logic circuit for following logic equation after the simplification using K Map. *d* represents don't-care condition.

$$F(A,B,C,D) = \sum m(4, 5, 7, 8, 10, 13) + d(0, 1, 2, 9, 12)$$

(C.O.No.2) [Comprehension]

4. Analyze the given circuit and obtain the state transition diagram.

(C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 16 marks.

(2Qx16M=32M)

5. Write a Verilog code for the given circuit. Also simplify the expression for outputs using Boolean algebra. (C.O.No.1) [Comprehension]

6. List the steps for designing synchronous sequential circuits. Design a 3-bit synchronous binary down counter using T flip flop. (C.O.No.3) [Application]

GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]	Total Marks
therenge getred f	n gal		K	C	A	
1	1,2,3	1,2,3	15	- · · · ·	6 - 1	15
2	2	2	YTX TEE	estuara. Income	11	11
3	2	2	-	11	VOM - N	11
4	3	3		11	vii. Encod	11
5	1	1	-	16	J. 18 30 -	16
6	3 .	3	-	nexcipii ack palis	16	16
	Total Ma	ırks	15	38	27	80

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

SHIMIL SHITO

Reviewer Commend:

Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester:

Odd Sem. 2019-20

Date:

24.12.2019

Course Code:

CSE 202

Time:

3 HRS

Course Name:

DIGITAL DESIGN

Max Marks: 80

Program & Sem: B.TECH, III CSE/IST/ISE/CCE

Weightage: 40%

Part A

 $(15Q \times 1M = 15Marks)$

Q No		Solution	Scheme of Marking	Max. Time required for each Question
1	i. ii. iii. iv. v. vi. viii. ix. x. xi. xii. xi	Literal 2 ⁿ AB'C + AB'C' + A'B'C MEV Technique 2, 1 Encoder 1100 8 × 1, 2×1 Demultiplexer Feedback path Logic gates, Latches Excitation table 8 Q _{n+1} = Q _n T' + Q _n 'T	15Q × 1M = 15 Marks	20 mins

Part B

 $(3Q \times 11M = 33 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
2	A B C D F MAP ENTRY	TRUTH TABLE -2M	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GROUPING – 2M MAP ENTRY EXPRESSION = 4M	30 mins
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOGIC DIAGRAM - 3M	

4.	$A(t + 1) = D_A$ $B(t + 1) = D_B$ $y = (A + B) x^2$	= A'x			Boolean Expression - 3M State Table - 4M	30 mins
	Present State	Input	Next State	Output	State Diagram - 4M (3 + 4 + 4 = 11M)	
	A B	*	A B	<i>Y</i>		
	0 0	()	0 U	()		
	0 1	n 1	() () [[1		
	1 ()	K.)	() () [()	0		
	3000 SOOR	()	0 0	1		
	1/0	0/1	1/0			

Part C

 $(2Q \times 16M = 32Marks)$

	· • • • • • • • • • • • • • • • • • • •	, .	
Q No	Solution	Scheme of Marking	Max. Time required for each Question
5.	Verilog Code module ckt(a,b,c,x,y); input a.b.c;	Verilog Code – 6M	
	output x,y;	Expression for x -5M	
	wire g1_out,g2_out,g3_out; and g1(g1_out,a,b); nor g2(g2_out,b,c);	Expression for y -5M	35 mins
	nand g3(g3_out,g1_out,g2_out); or g4(x,g1_out,g3_out); and g5(y,g2_out,g3_out); endmodule	(6 + 5 + 5 = 16 Marks)	

	= (a = 1 y = ((= (a = (a = (a) = (a)	(a.b) + (b+c) (a.b) (a.b)' + (a.b)' (ba' + b') (b'c' + a' + 1)	(b + c) (b+c)) +c)' (b'.c') b'c'	· (b+c)	·c)'						
6.	Design Procedure 1. From the word description and specifications of the desired operation, derive a state diagram for the circuit. 2. Reduce the number of states if necessary. 3. Assign binary values to the states. 4. Obtain the binary-coded state table. 5. Choose the type of flip-flops to be used. 6. Derive the simplified flip-flop input equations and output equations. 7. Draw the logic diagram.								Design Procedure – 5M State Diagram – 2M State Table – 3M K Map & Expression – 3M Logic Diagram – 3M (5 +2 + 3 + 3 + 3 = 16M)	35 mins	
	A 0	PS	100	40	NS	10		NPUT			
	A2 A1 A0 A2 A1 A0 T2 T1 T0										
	1 1 0 1 0 1										
	1	0	0	0	1	1	1	1	1		
	0	1	0	0	0	1	0	0	1 1		
	0	0	1	0	0	0	0	0	1		
	0	0	0	1	1	1	1	1	1		
		T2 =	A' ₁ A' ₀ ,	T1 =	= A ₀ '	,	Γ0 = 1				

