

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Course Code: ECE 201

Course Name: ANALOG ELECTRONICS

Program & Sem: B.Tech, (ECE/EEE) & III

Date: 27-09.2019

Time: 2:30PM to 3:30PM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries four marks. (3Q)

(3Qx4M=12M)

- Define mass action law. Show how current density is related to conductivity and Electric field. (C.O.NO.1) [Knowledge]
- 2. What is Fermi energy level? Describe how the Fermi level changes with respect to P- type and N-type semiconductor. (C.O.NO.1) [Knowledge]
- 3. Name the circuit as shown in fig 1 and describe the same with input and output Waveforms. (C.O.NO.1) [Knowledge]

Fig 1

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

4. a) Find the output voltage for the regulator circuit. Also find Iz.

(i)
$$R_L=100\Omega$$
 (ii) $R_L=9k\Omega$. Given $V_Z=6v$

[5M]

(C.O.NO.1) [Comprehension]

b) Distinguish between Zener and Avalanche Breakdown.

[3M]

(C.O.NO.1) [Comprehension]

- 5. A semiconductors hole mobility =200cm²/v-s and electron mobility=800cm²/v-s.An Electric field is 10¹⁴/cm³ and hole concentration is 10¹⁵/cm³. The electron concentration Decrease linearly from 10¹⁴/cm³ to 5x10¹³/cm³ and that for hole is from 5x10¹⁵/cm³ to 10¹⁴/cm³ over a distance 10cm.area=0.20cm². Find total current due to
 - (i) Electrons (ii) Holes

[8M]

(C.O.NO.1) [Comprehension]

Part C [Problem Solving Questions]

Answer the Questions. The Question carries equal marks.

(1Qx12M=12M)

a) The input of the transistor is Base and output of the transistor is collector identify
the transistor configuration explain with a neat circuit diagram and input, output
Characteristics. [8M]

(C.O.NO.2) [Comprehension]

b) In a common base $I_E=1$ mA.If emitter circuit is open, collector current is 50 μ A, $\alpha=0.92$.Find (i) Total current (ii) β (ii) γ [4M]

(C.O.NO.2) [Comprehension]

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEDGE REAL HI GREATER HUIGHTS

Semester: III

Course Code: ECE 201

Course Name: Analog Electronics

Date: 27th Sep 2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type irks a	recall e allotted] Levels	prov [Mai	rks al	ght g type llotted] Levels	Problem Solving type [Marks allotted]			Total Marks
	0.04		4 3 4	***************************************								
1	C.O.1	Module1	4M	k	-	-	-	-	_	-	-	4
2	C.O.1	Module1	4M	k	-	-	-	-	-	-	-	4
3	C.O.1	Module1	4M	k	-	-	_	-	_	ture .	-	4
4	C.O.1	Module1	_	-	-	8M	С	-	-	-	•	8
5	C.O.1	Module1	-	-	-	8M	С	-	_	-	-	8
6	C.O.2	Module2	-	-		-	-		12 M	С	-	12
The second secon	Total Marks		12			16			12			40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Ms. Nanditha H $\,\mathrm{G}\,$]

Reviewers' Comments

Uneven distribution o required to solve

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 27th Sep 2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Semester: III

Course Code: ECE201

Course Name: Analog Electronics

Part A

(3x 4 = 12 Marks)

	(2	2 Marks)
Solution	Scheme of Marking	Max. Time required for each Question
	Solution	Solution Scheme of

1	Mass-Action law:	2	7
	$n \cdot p = n_i^2$		
	where $n \rightarrow no$. of electrons $p \rightarrow no$. of holes		
	n; -> Intrînsic carrier concentration = 1.45×1010/cm3		
	> 1.43 ×10 /cm		
21	Current Density:	2	8
	$ \begin{array}{cccc} $		
Transmission of the contract o	$T = \frac{Q}{t}$		
	Il 'N' et are present:		
	$1 = \frac{Na}{4} = -0$		
	Were E >V Em/s) or (m/s) $V = \frac{1}{V} \iff L = \frac{1}{V}$		
	Subtin Egn (1)		
.'			
	$T = \frac{T}{A} = \frac{NqV}{iA}$		
	$= q \vee (\frac{N}{A \cdot 1}) \qquad \text{where } A \to cm^2 \Rightarrow cm^3$		
	$J. = q, \forall n$ $\uparrow \qquad \qquad$		
	(V=)UE) concentration.		
j1	J=nque.		
	from conductivity of name		
	J=0-E		-
	. Trot is the expression of arrent		

Г	,'		T	
	,,			
	2	Termi level	4	10
	2	termi level Jt is an imaginary line b/m valence	4	10
	2	band and conduction hard which will indent	4	10
	2	band and conduction bard vehich will industre the E soncentration at a given demp:	4	10
	2	band and conduction barrol vehich will industrible E soncentration at a given derrip:	4	10
	2	band and conduction bard vehich will industre the E soncentration at a given demp:	4	10
	2	band and conduction barrol vehich will industrible E soncentration at a given derrip:	4	10
	2	band and conduction barrol vehich will industry the E soncentration at a given demp: CB CB EFEc Ec	4	10
	2	Je is an imaginary line b/m valence band and conduction bard website will industry the exoncentration at a given derup: CB CB EF EFEc Ec	4	10
	2	Je is an imaginary line b/w valence band and conduction bard website will indicate the \(\tilde{\text{c}}\) somewhat a given descrip: \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \\ \end{array} \] \[\begin{array}{c} E_F \\ \nu_B \	4	10
	2	Je is an imaginary line b/w valence band and conduction bard website will indicate the \(\tilde{\text{c}}\) somewhat a given descrip: \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \\ \end{array} \] \[\begin{array}{c} E_F \\ \nu_B \	4	10
	2	Je is an imaginary line b/w valence band and conduction bard website will indicate the \(\tilde{\text{c}}\) somewhat a given descrip: \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \\ \end{array} \] \[\begin{array}{c} E_F \\ \nu_B \	4	10
		band and conduction barbol vehich will industry the Exoncentration at a given derip: CB CB Ec FFEc VB TV FF NB n-type large no. of elections will be available in conduction band, so fermi level will lie may	4	10
		band and conduction barbol vehich will industry the Exoncentration at a given derip: CB CB Ec FFEc VB TV FF NB n-type large no. of elections will be available in conduction band, so fermi level will lie may	4	10
		Je is an imaginary line b/w valence band and conduction bard website will indicate the \(\tilde{\text{c}}\) somewhat a given descrip: \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \end{array} \] \[\begin{array}{c} CB \\ E_F \\ \end{array} \] \[\begin{array}{c} E_F \\ \nu_B \	4	10
		band and conduction barbol vehich will industry the Exoncentration at a given derip: CB CB Ec FFEc VB TV FF NB n-type large no. of elections will be available in conduction band, so fermi level will lie may	4	10
		band and conduction barbol vehich will industry the Exoncentration at a given derip: CB CB Ec FFEc VB TV FF NB n-type large no. of elections will be available in conduction band, so fermi level will lie may	4	10

Q	Solution	Scheme of Marking	Max. Time required for each Question
4	a) Step1 open circuit Zener diode and replace with open circuit voltage Voc	1+2+2	7
	Step2 Case1 If Voc is less than Vz Zener diode not conducting Iz=0	3	
	Case2 If Voc is greater than Vz Zener diode is conducting and replace with Zener voltage		
	R_L =100 Ω V _{oc} =10/11 less than Vz=6 ν Iz=0 RL=9k Ω Voc=9 ν Voc greater than Vz=6 ν		
,	So Zener diode is conducting and replaced by Zener voltage $Vz=6v$ $Is=I_Z+I_L$ $I_Z=3.34$ mA		
	4b Zener breakdown due to electric field, depletion region thin, occurs at voltage 4v		
	Avalanche breakdown due to high reverse voltage, depletion region thick and voltage is 6v		
5	$\frac{dP}{dx} = \frac{200 \text{ cm}^2/\text{v-s}}{\text{Mn}} = \frac{10^{14}/\text{cm}^3}{\text{N}} = \frac{10^{14}/\text{cm}^3}{\text{Mn}} = \frac{800 \text{ cm}^2/\text{v-s}}{\text{V/cm}^3} = \frac{10^{15}/\text{cm}^3}{\text{m}} = \frac{10^{15}/\text{cm}^3}{\text{Io}} = \frac{10^{14} - 10^{13}}{\text{Io}} = \frac{10^{14} - 10^{13}}{\text{Io}} = \frac{10^{14} - 10^{13}}{\text{Io}} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{4.9 \times 10^{14}/\text{cm}^3}{\text{Io}}$ $\frac{dP}{dx} = \frac{10^{14} - 10^{14}}{\text{Io}} = \frac{10^{14}}{\text{Io}} = $	1+1+2+2+1+1	10

$$T = (10^{14} \times 1.6 \times 10^{-19} \times 800 \times 2 \times 10^{3} + 1.6 \times 10^{-19} \times 20.8 \times 10^{3} + 1.6 \times 10^{-19} \times 10^{-19$$

Part C

 $(1 \times 12 = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
6a	ii. Common Emetter translistar :- (CE)	1+1+1+1+1+1+1+2	
	PB & Rc RB & Rc RB & VCE VBE VCE, +c, Nc 'TC TC TC TC TC TC TC TC TC TC		5

Vos -> base to around voltage. Vcc -> collector to Ground voltage.

* Input characteristics?-

This is a graphical relationship b/w input voltage i.e VBE and input current i.e IB keeping output voltage i.e V_{CE} constant. $I_{C}(MA)$ V: 2V

* Output choracteristics ? -

This is a general relationship b/w output voltage and % worrent keeping input awarent ine Is constant.

* Current gain/amplification factor:

$$\beta = \frac{O/P \text{ abovent}}{I/P \text{ abovent}} \Rightarrow \beta = \frac{I_C}{I_B} \Rightarrow \boxed{I_C = \beta I_D}$$

* Expression of output auvent:-

where, ICEO > Revouse current when input is open.

By comparison,
$$\beta = \frac{\alpha}{1-\alpha} \qquad T_{CEO} = \frac{1}{1-\alpha} \quad T_{CBO}$$

6b
$$\beta = \alpha/1 - \alpha = 11.5$$
 $\gamma = \beta + 1 = 12.5$ $1+1+2$ 2

I	$I_{C} = \alpha I_{E} + I_{CBO} = 0.970 \text{mA}$		
	$I_{\rm C} = \alpha I_{\rm E} + I_{\rm CBO} = 0.970 \mathrm{mA}$	i i	
	1(TU1) 1 (RO TU, 7 / U11 / 1		
	TO WIE TO BO OLYTONIA	1	
		!	
1		1	
1			
- 1		1	
1		1	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Date: 16.11.2019

Course Code: ECE 201

Time: 2:30 PM to 3:30 PM

Course Name: ANALOG ELECTRONICS

Max Marks: 40

Program & Sem: B.Tech (ECE) & III

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries four marks.

(3Qx4M=12M)

1. Explain the method of calculating hie and hie graphically.

(C.O.NO.2) [Knowledge]

2. Answer the following question

(C.O.NO.2) [Knowledge]

Fig.1

- (a) For the above two port network write the equation for hybrid parameters.
- (b) Write the h-parameters equation for CE,CC and CB configuration.

3. For a fixed bias circuit given below Vcc=+12V, R_B.= 240 k Ω ,R_C.= 5 k Ω , β =50 assume the transistor is Si transistor . Calculate Ic and Vce. (C.O.NO.2) [Comprehension]

Fig:2

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

- Stabilization is determined by a factor called "Stability Factor", derive the same with respect to reverse saturation current (Ico) and voltage between base and emitter
 (V_{BE}) for emitter bias current.
 (C.O.NO.2) [Comprehension]
- 5. Thevini's theorem is applied for reducing the complexity of voltage divider circuit draw the thevinin's equivalent circuit for the voltage divider and calculate thevinin's voltage and resistance, base current and the voltage between collector and emitter.

(C.O.NO.2) [Comprehension]

Given: Vcc= 22 V, β=140, R1=3.9k, R2=3.9k, Rc= 10k, Re= 1.5k

Part C [Problem Solving Question]

Answer the Question. The Question carry twelve marks.

(1Qx12M=12M)

- 6. Derive the following parameters for a transistor amplifier using complete h parameter model (C.O.NO.2) [Comprehension]
 - (a) Voltage Gain
 - (b) Voltage gain including source resistance
 - (c) Current Gain
 - (d) Current gain including source resistance
 - (e) Input impedance
 - (f) Output admittance

SCHOOL OF ENGINEERING

Semester: Odd Sem 2019-20

Course Code: ECE 201

Course Name: Analog Electronics

Date: 16/11/19

Time: 2:30pm-3:30 pm

Max Marks: 40

Weightage: 20

Extract of question distribution [outcome wise & level wise]

		Unit/Module	Memory recall	Thought	Problem Solving	Total
Q.NO	C.O.NO	Number/Unit	type	provoking type	type	Marks
	(%age	/Module Title	[Marks allotted]	[Marks allotted]	[Marks allotted]	
	of CO)		Bloom's Levels	Bloom's Levels		
4			K	С	Α	
1	2	BJT Biasing & Technique	4M	-		4M
2	2	BJT Biasing & Technique	4M	- 11 - 1	-	4M
3	2	Small signal (Analysis of BJT.	4M)	-	- >	4M
4	2	BJT Biasing & Technique		8M		8M
5	2	BJT Biasing & Technique	-	8M	<u>-</u> →	8M
6	2	Small signal Analysis of BJT.		12M	7	12M
	Total Marks		12M	28M		40M

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must

be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Ms. Ishita Deb]

Reviewer's Comments:

1) Though provoking question requires a description problem statement. Q.4 & Q.5 are not of that type.

2) Q.5 should be moved to Problem Solving type (A).

3) Q.6. is also not thought provoking (Q.P. and solution location mismatel)

4) Part-A-Q.3) is also Problem Solving.

type

Rimgh

5) Unequal distribution - 12/11/2019 of Bloom's livel.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 3rdReach Greater Heig

Course Code: ECE 201

Course Name: Analog Electronics

Branch & Sem: ECE & 3rd

Date: 16/11/19

Time: 2.30- 3.30 PM

Max Marks: 40

Weightage: 20

Part A

 $(4Q \times 4M = 16Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
------	----------	-------------------	--------------------------------------

			•

2	0, = h11 i, + h12 02 - 0 2 = h21 i, +h22 02 - 2 a) For common-base: 1 ie p ic 1 ie p ic 2 be 1 ie p ic 4 be 1 ic p ic 1 ic p ic p ic 1 ic p ic p ic 1 ic p ic p ic 1	1M- h parameter equation 3M- CE,CC,CB equation	4 min
	by For Common-Emiller: Obe = hie ib + has use _ 0 ic = he ib + has use _ 0 common collasto. R Obe = hic ib + has use _ 0 ib n Veb = hic ib + has use _ 0 ie = he ib +		
3	(i) $T_B = \frac{V(C - VBE)}{RB} = \frac{12 - 0.7}{240.} = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \beta I_B = 50 \times 0.0 \cdot \vec{0.0} = 2.35 \cdot \vec{0.0}$ $\vec{I}_E = \vec{1} \cdot \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_B = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_E = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_B = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$ $\vec{I}_C = \vec{0.0} \cdot \vec{0.0} \cdot \vec{0.0} = 2.35 \cdot \vec{0.0} \cdot \vec{0.0}$	1M- KVL equation 1.5M- VCE 1.5M- IC	5 min

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	V(C RB RC V(E V(E	4+4M	10 min
5.	$\frac{dJ_{C}}{dV_{BE}} = \frac{B}{R_{B}+(B+1)R_{E}} (O-1) + (B+1) (O)$ $V_{B} = \frac{R_{2}V_{CC}}{R_{1}+R_{2}} = \frac{3.9x2^{2}}{3.9x39} = 2V, R_{B} = \frac{R_{1}R_{2}}{R_{1}R_{E}} = \frac{39x3.9}{3943.9} = 9.6K.$ $I_{B} = \frac{V_{B}-V_{BE}}{R_{0}+(B+1)R_{E}} = \frac{2-O-1}{5.5+((u_{1})x_{1}).5} = 0.006mA$ $I_{C} = \beta J_{B} = 140 (0.006)$ $= 0.84mA$ $V_{CE} = V_{CC} - I_{C}(R_{C}+R_{E}) = 22 - 0.84 (11.5) = 12.34 V$ $V_{C} = V_{CC} - I_{C}R_{C} = 22 - 0.84 (10) = 13.6 V$ $V_{E} = V_{CR} * I_{C}R_{E} = 22 + 0.84 (1.5) = 1.36 V$	1M each for equation(1M*4) 1M each for answer (1M*4)	10 min

	Part C	$(1Q \times 8M =$	8 Marks)
Q No	Solution	Scheme of Marking	Max. Time required for each Ouestion
Q No	As = $\frac{A_1}{C_1}$ As = $\frac{A_2}{C_1}$ As = $\frac{A_1}{C_1}$ As = $\frac{A_2}{C_1}$ As = $\frac{A_1}{C_1}$ As = $\frac{A_2}{C_1}$ As =	1M – h parameter equation 2M- equivalent circuit 1.5M for each derivation=9M	
	$A_{S_{S}} = A_{S} \frac{V_{1}}{V_{2}}$ Z_{1} $V_{2} = \frac{Z_{1}}{V_{2}}$ $A_{S_{S}} = A_{S} \frac{Z_{1}}{P_{2} + Z_{1}}$ $A_{S_{S}} = A_{S} \frac{Z_{1}}{P_{2} + Z_{1}}$		

_	>
\Rightarrow	
a	<u>a</u>
GAIN MORE KN REACH GREATE	

	Roll No.						
--	----------	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20

Date: 23 December 2019

Course Code: ECE 201

Time: 1:00 PM to 4:00 PM

Course Name: ANALOG ELECTRONICS

Max Marks: 80

Program & Sem: B.Tech (ECE & EEE).& III

Weightage: 40%

Instructions:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the sub Questions. Each sub Question carries 2 marks. (10Qx2M=20M)

1. a. Define Thermal runaway for a transistor. (C.O.No.2) [Knowledge] b. Write the Barkhausen Criteria For Oscillators. (C.O.No.4) [Knowledge] c. Cascade structure is used to provide high Gain & Darlington Circuit is used to provide high Gain. (C.O.No.2) [Knowledge] d. Define Pinch off condition for N-Channel JFET. (C.O.No.3) [Knowledge] e. Define transconductance (g_m) for N-Channel JFET. (C.O.No.3) [Knowledge] Differentiate between Forward biasing & Reverse Biasing for PN Junction Diode? (C.O.No.1) [Knowledge] g. If α =0.99, $I_B = 20\mu A \& I_{CO} = 10 nA$, Find Collector Current (I_C). (C.O.No.2) [Knowledge] h. Mention the efficiencies of Half Wave Rectifier & Full Wave Rectifier? (C.O.No.1) [Knowledge] List two differences between p-type & n-type Semiconductor? (C.O.No.1) [Knowledge] List at least 2 advantages of negative Feedback. (C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 08 marks.

(5Qx8M=40M)

- 2. The feedback circuit where the output voltage is connected in series with the input is called Voltage Series topology. Derive input impedance & output impedance with feedback for this circuit. (C.O.No.4) [Comprehension]
- 3. For an Emitter Biasing circuit, the following parameters are given: $V_{CC} = 20V$, $R_B = 430 K\Omega$, $R_C = 2 K\Omega$, $R_E = 1 K\Omega$, $\beta = 50$, $V_{BE} = 0.7 V$. Calculate: $i) I_B$, $ii) I_C$, $iii) V_{CE}$, $iv) V_C$, $v) V_E$, $vi) V_B$, $vii) S_{(ICO)}$, $viii) S_{(Vbe)}$ (C.O.No.2) [Comprehension]

- 4. The Oscillator which is consisting of LC feedback circuit, with 2 inductors & 1 capacitor is called Hartley Oscillator. Explain the working of this circuit with proper circuit & suitable mathematical expression. (C.O.No.4) [Knowledge]
- 5. The JFET, where the current is flowing from Drain to source in an n-channel medium with gate are of opposite polarities is called n-channel JFET. Explain the working of the circuit with proper block diagram & input, output characteristics.

(C.O.No.3) [Knowledge]

6. Identify the feedback Amplifier which will give high input impedance & high output impedance. For that feedback amplifier, derive input impedance with feedback & output impedance with feedback. (C.O.No.4) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 10 marks.

(2Qx10M=20M)

7.

a. Why Darlington transistors are also referred to as super beta transistors? Explain the concept using the internal schematic of Darlington transistors with relevant mathematical expressions by using DC Analysis.

(C.O.No.2) [Knowledge]

b. Pure silicon has an electrical resistivity of 3000 Ω -m. If the carrier density in it is $1.1 \times 10^6/m^3$ & the electron mobility is three times that of hole mobility, calculate the mobility of electrons & holes. [4M]

(C.O.No.1) [Knowledge]

8.

a. Figure below shows a 2-stage BJT cascaded amplifier. Given h_{ie} = 2 k Ω and h_{fe} = 100. Assume h_{oe} effect negligible. Consider load impedance of second stage is 5K Ω . Vcc= 20V. Calculate:

(C.O.No.3) [Comprehension]

- i) Voltage gain for each stage.
- ii) Total Voltage gain.
- iii) Total Current gain.

b. Differentiate between BJT & FET. Mention at least 4 points.

[2M]

(C.O.No.3)[Knowledge]

SCHOOL OF ENGINEERING

Semester: Odd Sem 2019-20

Course Code: ECE 201

Course Name: Analog Electronics

Date: 23/12/19

Time: 1.00 pm- 4.00 pm

Max Marks: 80

Weightage: 40

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.N O (%age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels	Thought provoking type [Marks allotted] Bloom's Levels	Problem Solving type [Marks allotted]	Total Marks
			K	С	Α	
1	1,2,3,4	Module 1, 2,3, 4	20M	-	-	20M
2	4	Feedback Amplifier	-	8M	-	8M
3	2	Transistor Biasing	-	8M	-	8M
4	4	Oscillator	8M	-	-	8M
5	3	FET	8M	-	-	8M
6	4	Feedback Amplifier	-	8M	-	8M
7.a	2	Multistage amplifier	6M	-	-	6M
7.b	1	Semiconducto r Physics	4M	-		4M
8.a	3	Multistage Amplifier	-	8M	-> ?	8M
8.b	3	FET	2M-	7		2M
	Total Marks		48M	32M		80M

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Mr. Swastik Sahoo]

Semester: 3rd

Reviewer's Comments: Thought Provoking Questions munt as per guidelines, from next lem. onwors ds. On 80 should be in Application Level.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 23/12/19

Time: 1.00 - 4.00 pm

Max Marks: 80

Weightage: 40

Course Code: ECE 201

Course Name: Analog Electronics

Branch & Sem: ECE & 3rd

Part A

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	a. Thermal Runaway: Taking CE equation, $I_c = \beta I_B + (\beta + 1)I_{CO}$. If the temp. will increase, then reverse saturation current & Amplification factor will increase. So for a small increase in temp. there will be large variation in collector current & if it will exceed the rated value, the circuit may break down. This is called Thermal Runaway	2	3 Min
	 b. Barkhausen Criteria: The loop gain must be equal to 1. The total Phase shift must be 0° or 360°. 	1M for each	2 Min
	c. Voltage Gain & Current Gain.	1M for each	1 Min
	d. The reverse voltage at which, two depletion region at each side of the gate will touch each other & the flow of current saturates & remains constant. This is called Pinch-Off condition.		2 Min
	$e.g_m = \frac{2I_{DSS}}{ V_P } \times (1 - \frac{V_{GS}}{V_P})$	2	3 Min

f.	When p-type is connected to positive & n-type is connected to negative, then it is called Forward Biasing & when the connection is reverse, then it is called Reverse Biasing.	1M for each	2 Min
g.	$I_C = \beta I_B + (\beta + 1)I_{CO} = 1.98 \text{ mA}$	2	3 Min
h.	For Half Wave Rectifier: 40.6% & Full Wave Rectifier: 81.2%.	1M for each	2 Min
i.	P-type: Majority charge carrier is holes & less conductivity. N-type: Majority charge carrier is electron & More Conductivity.	1M for each	3 Min
j.	Negative Feedback: - More Stable Less distortion & less frequency Distortion.	1M for each	3 Min

Part B

 $(2Q \times 8M = 16 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	Voltage Series is called series-shunt, i.e. input is connected in series & output is connected in parallel. Input impedance is given as: $R_{if} = R_i(1 + A\beta)$ & the output impedance is given as $R_{of} = \frac{R_o}{(1+A\beta)}$. Here, A is the forward voltage gain & β is the feedback factor. $V_{CC} - V_{RE}$	2M each for Block Diag. + Circuit Diag. + Input Impedance+ Output Impedance	10
3	$i) I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} = 40.1 \mu A.$ $ii) I_{C} = \beta I_{B} = 2.01 mA$ $iii) V_{CE} = V_{CC} - I_{C}(R_{C} + R_{E}) = 13.97 V.$ $iv) V_{C} = V_{CC} - I_{C}R_{C} = 15.98 V.$ $v)V_{E} = I_{C}R_{E} = 2.01 V$ $vi) V_{B} = V_{BE} + V_{E} = 2.71 V$ $vii) S_{(ICO)} = (\beta + 1) \frac{R_{B} + R_{E}}{R_{B} + (\beta + 1)R_{E}} = 45.69$ $viii) S_{(VBE)} = \frac{-\beta}{R_{B} + (\beta + 1)R_{E}} = -0.10 m\Omega^{-1}$	Parameter	
4	Hartley Oscillator: In a Hartley oscillator, the oscillation frequency is determined by a tank circuit comprising of two inductors and one capacitor. The inductors are connected in series and the capacitor is connected across them in parallel.	3M for Diagram+ 5 M for Working	10

	When the power supply is switched ON the transistor starts conducting and the collector current increases. As a result the capacitor C1 starts charging and when the capacitor C1 is fully charged it starts discharging through coil L1. This charging and discharging creates a series of damped oscillations in the tank circuit and it is the key. The oscillations produced in the tank circuit is coupled (fed back) to the base of Q1 and it appears in the amplified form across the collector and emitter of the transistor. The output voltage of the transistor (voltage across collector and emitter) will be in phase with the voltage across inductor L1. Since the junction of two inductors is grounded, the voltage across L2 will be 180° out of phase to that of the voltage across L1. The voltage across L2 is actually fed back to the base of Q1. From this we can see that, the feedback voltage is 180° out of phase with the transistor and also the transistor itself will create another 180° phase difference. So the total phase difference between input and output is 360° and it is very important		
5	condition for creating sustained oscillations. N-Channel JFET: JFET stands for Junction Field Effect Transistor. The input circuit is connected in Reverse Biasing & output is in forward biasing. When V_{DS} will be applied the drain current will start to flow from drain to source. If the medium is n-type then it is called n-channel. Gate will be of opposite type, i.e. p-type & at the junction depletion region will be formed. When reverse voltage V_{GS} is applied then the width of the depletion region will increase. If further that voltage will be increased the width of the depletion regions will touch each other & the drain current will stop. That condition is called pinch off condition, The Shockley's equation describing that can be expressed as: $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_D}\right)^2$	2M construction+ 2M Explanation+ 2M input characteristics +2M Output Chracteristics	10
6	Current Series is called series-series, i.e. input is connected in series & output is connected in series. Input impedance is given as: $R_{if} = R_i(1 + A\beta)$ & the output impedance is given as $R_{of} = R_o(1 + A\beta)$. Here, A is the forward voltage gain & β is the feedback factor.	2M each for Block Diag. + Circuit Diag. + Input Impedance+ Output Impedance	10

	rari C	(TQ XT2 M - T2 Marks)		
Q No	Solution	Scheme of Marking	Max. Time required for each Question	
7. a	Darlington Connection = 1st condition: Collector of both the transintor will be Connected to Vac and: Emitter of 1st transistors in Connected to base of 2nd transistors dayout of Darlington (CR-(C) 9- modes Frazing Circuit: 123 - Tant Tan - Jant Pates - Jan (Port) 123 - Tant Tan - Jant Pates - Jant (Port) 124 - Jant Tant - Jant Pates - Jant (Port) 125 - Tant Fall - Vac	2M circuit+ 4M for Derivation	12	
7.b	Conductivity is the reciprocal of resistivity. $\sigma=nq(\mu_n+\mu_p).$ Applying this & from the relation, $\mu_n=3\mu_p$,	2 M for each parameter	6 Min	
	$\mu_p = 4.7348 \times 10^8 \frac{m^2}{V - Sec} \& \mu_n = 1.42 \times 10^9 \frac{m^2}{V - Sec}$			

8.a	First Stage: $R_B = \frac{R_{B1}R_{B2}}{R_{B1} + R_{B2}} = 3.33K\Omega.$	4M for the voltage gain of each stage	15 Min
	Input Impedance: $Z_{in}=\frac{R_Bh_{ie}}{R_B+h_{ie}}=1.24~K\Omega.$ Output Impedance: $Z_{out}=R_C=2~K\Omega$ Voltage Gain= $-\frac{h_{fe}Z_{out}}{Z_{in}}=-161.29$	+ 2M for total Voltage Gain +2M for total	
	Second Stage: $R_B = \frac{R_{B1}R_{B2}}{R_{B1}+R_{B2}} = 3.33K\Omega.$ Input Impedance: $Z_{in} = \frac{R_Bh_{ie}}{R_B+h_{ie}} = 1.24\ K\Omega.$ Output Impedance: $Z_{out} = R_C = 2\ K\Omega$ Voltage Gain= $\frac{h_{fe}Z_{out}}{Z_{in}} = -161.29$ ii) Total Voltage Gain: 26014.46 iii) Total Current Gain= $A_{IT} = \frac{A_{VT}R_C}{Z_{in1}} = 104897.01$	Current Gain	
b	BJT: Bipolar Junction Transistor, Current Controlled Device, More Switching Time, More Noise along with the symbols & its terminals. FET: Unipolar Junction Transistor, Voltage Controlled Device, Less Switching time, Less Noise along with the symbols & its terminals	0.5 M for each point	10 Min