

Roll No.						ļ -	
						ĺ	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 1

Sem: Odd Sem 2019-20

Date: 01.09.2019

Course Code: EEE 219

Time: 11.00AM to 12.00PM

Course Name: NETWORK THEORY

Max Marks: 40

Program & Sem: B.Tech (EEE) & III

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer the Questions. Each Question carries four marks.

(3Qx4M=12M)

1. Differentiate between

(C.O.NO.1)[Comprehension]

- (i) Linear and non linear elements
- (ii) Active and Passive elements
- 2. State the followings

(C.O.NO.2) [Knowledge]

- (i) Superposition theorem
- (ii) Thevenin's theorem
- 3. Replace the given network shown in the Fig. 3 with a single current source and a resistor using source transformation. (C.O.NO.1)[Comprehension]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

4. How to reduce the complexity of the given network shown in the Fig. 4 so that we can find the supply current when 20V is applied between the terminals A & B.

(C.O.NO.1) [Comprehension]

Fig. 4

5. Find the current through the 4 Ω resistor using mesh analysis shown in the Fig. 5. (C.O.NO.1) [Comprehension]

Fig. 5

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

6. a) Find voltage at nodes 1 & 2 shown in the Fig. 6 (a). (C.O.NO.1 [Comprehension]

Fig. 6(a)

b) Find the current through the 10 Ω resistor shown in the Fig.6 (b).

(C.O.NO.1)[Comprehension]

Fig. 6 (b)

Semester: III

Course Code: EEE 219

Course Name: Network Theory

Date: 01 October, 2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title			Thought provoking type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks		
1	1	1	The same of the sa		4		yet or seek and a section of a law or				
2	2	2	4				1				
3	1	1	 		4				!		
4	1	1			8					1	
5	1	1			8	 					
6	1	1					 	12			
	Total Marks	40						12			

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Mr. Abrar]

Reviewers' Comments

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 01 October, 2019

Semester: III

Time: 1 Hour

Course Code: EEE 219

Max Marks: 40

Course Name: Network Theory

Weightage: 20%

Part A

 $(3Q \times 4M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	(i) Difference between Linear and non line	ar elements 2 M	5 Mins
	(ii) Difference between Active and Passive	elements 2 M	
2	Statement of (i) Superposition theorem	2 M	5 Mins
-	(ii) Thevenin's Theorem	2 M	
Laboratoria de America			

Solution State the source and resist of By source cons	e ressance of \$12 is connected to perfilled which exologies entered to perfilled which exologies are a connected to perfilled with return of a uncertainty of the entered to a connected t	2 M	
333		2 M	

Part $B(2Q \times 8M = 16 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	The simplified network is shown in Fig. 2.5. $ A G G G G G G G G G G G G G G G G G G G$	4 M	10 Mins

100	The network can be simplified as follows:		
		4 M	
	$K_{M} = 0.15 \pm 0$		
5	By KVL		10 Mins
	Loop 1: $6I_1 + 1(I_1-I_2) - 10 = 0$ $7I_1 - I_2 = 10$ (1)	2 M	
	Loop 2: $4I_1 + 3(I_2-I_3) + 1(I_2-I_1) = 0$ $-I_1 + 8I_2 - 3I_3 = 0$ (2)	2 M	
	Loop 3: $10I_3 + 20 + 3(I_3 - I_2) = 0$ - $3I_2 + 13I_2 = -20$ (3)	2 M	
	Solving equations (1), (2) and (3), we get $I_1 = 1.365 \text{ A}$ $I_2 = -0.4447 \text{ A}$ $I_3 = -1.641 \text{ A}$		
A physical in the control of the con	Current in 4 Ω is $I_2 = -0.4447$ A	2 M	
THE T I SHARE THE THE THE THE THE THE THE THE THE TH			

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
6 a)	By KCL At node 1		10 Mins
,	$\begin{vmatrix} -4 + \frac{v_1}{2} + \frac{v_1 - v_2}{2} = 0\\ 2V_1 - V_2 = 8 & (1) \end{vmatrix}$	2 M	
	At node 2		
	$-2 + \frac{v_2}{1} + \frac{v_2 - v_1}{2} = 0$ $-V_1 + 3 \ V_2 = 4 (2)$ Solving equations (1) and (2), we get $V_1 = 5.6 \text{ Volts}$	2 M	

	$V_2 = 3.2 \text{ volts}$	∠ IVI	
6 b)	Solution Applying KVI, to Mesh 1. $2 - I = 10 \cdot I = I = 0$ $11I = 10I_1 = 2$ Since meshes 2 and 3 contain a current source of 4 α the set α is α . Then α is α .	1 M	15 Mins
	is formed by two adjacent meshes that have a common carrent source. For this three I_3 and current $(I_3 - I_2)$ will be same, i.e., in the upward direction. Writing current equation to supermesh, $I_3 - I_2 = 4$	2 M	
	Applying KVL to outer path of supermesh, $-10(I_2 - I_1) - 5I_2 - 15I_3 = 0$ $10I_1 - 15I_2 - 15I_3 = 0$ $2I_1 - 3I_2 - 3I_3 = 0$ Solving equations (i). (ii) and (iii).	2 M	
TO THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PR	$I_1 = -2.35 \text{ A}$ $I_2 = -2.78 \text{ A}$ $I_3 = 1.22 \text{ A}$ Current through the $10-\Omega$ resistor = $I_1 - I_2$ = $-(2.35) - (-2.78) = 0.43 \text{ A}$	1 M	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Course Code: EEE 219

Course Name: NETWORK THEORY

Program & Sem: BTech. (EEE) & III Sem

Date: 19.11.2019

Time: 11.00 AM to 12.00 PM

Max Marks: 40

Weightage: 20%

Instructions:

(i)

Answer all questions.

Part A [Memory Recall Questions]

Answer both the questions. Each question carries six marks.

(2Qx6M=12M)

1. Determine the current in the 10α resistor by using Superposition Theorem.

Fig. 1

(C.O.NO.3)[Comprehension]

2. Determine the current through 24α using Thevenin's theorem.

Fig. 2

(C.O.NO.4)[Comprehension]

Part B [Thought Provoking Questions]

Answer both the Questions. Each question carries eight marks.

(2Qx8M=16M)

3. Find the current through the 10α resistor by Thevenin's theorem.

Fig. 3

(C.O.NO.3)[Comprehension]

4. For the circuit shown, find the value of resistance R_L for maximum power transfer and determine maximum power.

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries six marks.

(2Qx6M=12M)

5. In the network shown, the switch is closed at t=0. Assuming initial current in inductor to be zero, find i, di/dt, d²i/dt² at t=0⁺.

6. With the help of a table explain the behavior of R,L,C elements at the time of switching at t=0, at t=0+ and t=∞. (C.O.NO.4)[Knowledge]

Semester: 3

Course Code: EEE219

Course Name: Network Theory

Date: 19-11-19

Time: Max Marks: 40

Weightage: 20

Extract of question distribution [outcome wise & level wise]

Q. NO	C.O.NO	Unit/Module Number/Unit /Module Title	[]	Memory recall type Thought provoking type [Marks allotted] [Marks allotted] Bloom's Levels Bloom's Levels K C			oblem Solving type Marks allotted]	Total Marks		
1	3	2/ Network Theorems:						6	Comprehe nsion	6
2	3	2/ Network Theorems:						6	Comprehe nsion	6
3	3	2/ Network Theorems:				8	Compre hension			8
4	3	2/ Network Theorems:				8	Compre hension			8
5	4	3/ Transient Analysis,Laplace Transforns and Frequency response						6	Comprehe nsion	6
6	4	3/ Transient Analysis,Laplace Transforns and Frequency response	6	Knowle dge				6		6

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 19-11-19

Time: 11-12

Course Code:

Semester:

Max Marks: 40

Course Name:

Weightage: 20

Part A

 $(2Q \times 6M = 12Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	With 10V source alone current through 10Ω is $0.8A$,	2	
	with 4A current source alone is 0.23A	2	9
1	Total current=1.03A	2	
2	$V_{TH} = 93.5V$	2	
	$R_{TH} = 22.75\Omega$	2	
	Current through $24\Omega = 2A$	2	7

Part B

 $(2Q \times 8M = 16Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	$V_{TH} = 10V$ $R_{TH} = 17\Omega$ Current through $10\Omega = 0.37A$	3 3 2	15
4	$V_{TH} = 10V$ $R_{TH} = 0.91\Omega R_L$ Maximum Power=669.6W	3 3 2	15

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	$i(0^+) = 0$ di/dt = 100 A/s at t = 0 + $d^2i/dt^2 = -1000 \text{A/s}^2 \text{ at } t = 0^+$	2 2 2	8
6	For initial conditions For final conditions	3 each	6

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels	_	Problem Solving type [Marks allotted]	Total Marks
PART A	CO 01 CO 02	All the 4 modules	20 [3+3+2+6+6]			20
Q. NO1	CO 03					
Q.NO.2	CO 04					
	CO 05					
PART B	CO 05	MODULE 04	-	10	-	10
Q.NO.3		Three phase circuits				
PART B	CO 03	MODULE 02	-	10	-	10
Q.NO.4		Superposition theorem				
PART B	CO 01	MODULE 01	-	05	-	05
Q.NO.5 b		Nodal Analysis				
PART B Q.NO.5 a	CO 04	MODULE 03 Frequency response	-	05	-	05
PART C	CO 03	MODULE 03 Thevenin	-	-	07	07

SOLUTION

Semester: III

Time: 1:00 PM to 4:00 PM

Course Code: EEE 219

Max Marks: 80

Course Name:

Weightage: 40%

Date: 25 December /2019

Part A

 $(Q \times M = 20 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	 a. Root 3 times b. b. inner loop c. KVAR d. Opem circuited e. L/R f. Time , frequency d. Opem circuited 	Each Part:1 M Circuit:1M	12 min
2	 a. RI = Rth b. Y12 = Y21 and Y11 = Y22 c. Voltage & current magnitudes are equal in each phase and identical load is to be connected. d. R1 = RbRc/Ra e. Time taken to reach its final steady state from zero state. f. Single Current source in parallel with R g. Exponential function. 	Each Part: 2 M	28 min

Part B

 $(3Q \times 10M = 30 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	VI = 230 V, Vph = 132.79V Zph= 10.71, phase angle =38.13 Iph = 13.05A=II P = 1.73*VI*II cosø= 4.088 kW Q = 3.21KVAR	Each Part: 2 M	20 min
4	Find $Zt = 5 + 1/3 + j9(3+j4)(j5) = 6.35$ at 23.2 degree Find $It = V/Zt = 7.87$ at 66.8 degree A Apply current Division rule $I' = 4.15$ at 85.3 A Repeat the same procedure with source 2 I'' = 4.15 at 85.3 A I = I' + I''	Each Part 5M	20 min
5	a. Substitute s= jw	Each part 2.5M	20 min

Roll No					
	 <u></u>				

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: EEE 219

Course Name: NETWORK THEORY

Program & Sem: B.Tech (EEE/ECE) & III

Date: 27 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A [Memory Recall Questions]

Answer all the Questions.

1.					
a. In a 3-g star connects to	(6Qx1M=6M)				
a. In a 3-ø star connected load the line voltage is equal to	- times of phase voltage. (C.O.No.5) [Knowledge]				
b. Mesh is a loop which doesn't contain any	(C.O.No.1) [Knowledge]				
c are the units of reactive power. d. In Superposition theorem, while considering a course of the considering and course of the course of	(C.O.No.5) [Knowledge]				
d. In Superposition theorem, while considering a source, all other co	urrent sources are				
e. The equation of the	(C.O.No.2) [Knowledge]				
e. The equation of time constant in R-L circuit is	(C.O.No.4) [Knowledge]				
f. Laplace transform changes the domain function to the	_ domain function.				
2.	(C.O.No.4) [Knowledge]				
a. State the maximum passes to	(7Qx2M= 14M)				
the maximum power transfer theorem.	(C.O.No.2) [Knowledge]				
b. Write the reciprocity and symmetry condition for Y- parameters.	(C.O.No.5) [Knowledge]				
c. Define a balanced system.	(C.O.No.5) [Knowledge]				

Fig.2

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks.

(2Qx15M=30M)

6. a. For the following circuit shown in Fig.3, find the value of V_{TH} and R_{TH} . [7M] (C.O.No.3) [Comprehension]

Fig.3

b. In the network shown in Fig.4 the switch is moved from the position 1 to 2 at t = 0, the steady state condition having been established in the position 1. Determine i(t) for t > 0 using Laplace transforms. [8M] (C.O.No.4) [Comprehension]

Fig.4

7. a. Compute the h – parameters of a two port network using the following data.

With output port short circuited : $V_1 = 25 \text{ V}$, $I_1 = 1 \text{ A}$, $I_2 = 2 \text{ A}$

With input port open circuited : $V_1 = 10 \text{ V}$, $V_2 = 50 \text{ V}$, $I_2 = 2 \text{A}$

[6M] (C.O.No.5) [Comprehension]

b. Determine the open circuit impedance parameters for the following two port network shown in Fig.5. [9M] (C.O.No.5) [Comprehension]

Page 3 of 3