

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Course Code: MAT 103

Course Name: Engineering Mathematics-III

Program & Sem: B.Tech (All Program) & III

Date: 27.09.2019

Time: 11:00AM to 12:00PM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the questions properly and answer accordingly.

(ii) Scientific and non-programmable calculators are permitted

(iii) Question paper consists of 3 parts.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries six marks. [2Qx6M=12M]

1. Expand f(x) = x as the Fourier series over the interval $-\pi < x < \pi$.

[C.O.NO.1] [Comprehension]

2. Expand $f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & elsewhere \end{cases}$ as the Fourier Cosine transform.

[C.O.NO.2] [Comprehension]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries eight marks. [2Qx8M=16M]

3. Expand $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$ as the Fourier series over the interval

$$0 < x < 2$$
. Hence deduce $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$

[C.O.NO.1] [Comprehension]

4. Expand f(x) = 2x - 1 as a half range Fourier Cosine Series over the interval 0 < x < 2. [C.O.NO.1] [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks. (1Qx12M=12M)

5. Find the Fourier series expansion of period 2π for the function y=f(x) which is defined in (0, 2π) by means of the table values given below. Express y as Fourier series neglecting the harmonic above the second.

X	0	60	120	180	240	300
Y	1.0	1.4	1.9	1.7	1.5	1.2

[C.O.NO.1] [Comprehension]

Semester: III semester

Course Code: MAT103

Course Name: Engineering Mathematics -III

Date: 27-09-2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Memory recall Thought type provoking ty Number/Unit [Marks allotted] [Marks allott /Module Title Bloom's Levels Bloom's Lev		type prove [Marks allotted] [Mark Bloom's Levels Bloom		g type lotted]	[Marks allotted]		Total Marks			
1				K			С			Α		
1	1	Module-1 Fourier series	-	6							5 0	6
2	2	Module-2 Fourier Transform		6								6
3	1	Module-1 Fourier series			į		8					8
4	1	Module-1 Fourier series				-	8		and the state of t			8
5	1	Module-1 Fourier series								12		12
6	2	Module-2						. 1-		12		12

	Transform	The state of the s	: : :			The state of the s
Total		12	 16	12	40	
Marks			1			

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Ms. Bhavya K

Reviewers' Comments

SOLUTION

Semester: III semeter

Course Code: MAT 103

Course Name: Engineering Mathematics-III

Date: 27-09-2019

Time: 1 Hour

Max Marks. 40

Weightage: 20%

Part A

 $(2Q \times 6 M = 12 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	F(x) is odd function, hence	1 M	10
	$a_0 = 0$ and $a_n = 0$	$1\mathrm{M}$	-
	$b_n = \frac{-2(-1)^n}{n}$	3M	3
	$O_n = \frac{1}{n}$	1 M	
	Substitute in the series		
2	Fourier Cosine transform formula	1 M	10
	$F_{\epsilon}(S) = \frac{2sSin2s + \cos 2s - 1}{S^2}$	5M	

Part B

 $(2Q \times 8 M = 16 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	Formula	1 M	12
	$2[(-1)^n-1]$	6M	8
	$a_0 = \pi$ and $a_n = \frac{2[(-1)^n - 1]}{n^2 \pi}, b_n = 0$	IM	
	Substitution and deduction		
4	Half range Cosine series	1M	12
	Formula	1M	1
	$a_0 = 0$ $a_n = \frac{4[(-1)^n - 1]}{n^2 \pi}$	2 · 4M	

Q No	Solution	Scheme of Marking	Max. Time required for each Question
	Formula	181	15
5	$a_0 = 2.9$ $a_1 = -0.367$, $b_1 = 0.173$	9M	:
	$a_2 = -0.1$ $b_2 = -0.0577$ Substitution	2M	-
6	Fourier Cosine transform formula	l M	15
-	$F(S) = \frac{2Sins}{S}$	7M	
2	$F(S) = \frac{1}{S}$		1 -
	Evalauation i)x=0 ii) change s to x iii) limits	4M	
	$Ans = \frac{\pi}{2}$		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: MAT 103

Time: 11:00 AM to 12:00 PM

Course Name: ENGINEERING MATHEMATICS-III

Max Marks: 40

Program & Sem.: B.Tech. (All Programs) & III

Weightage: 20%

Instructions:

I. Read the questions properly and answer accordingly.

II. Scientific and non-programmable calculators are permitted

III. Question paper consists of 3 parts.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries four marks.

(2Qx4M=8M)

1. Find $L[e^{2t} + 4t^3 - 2\sin 3t + 3\cos 3t]$.

(C.O.NO.3) [Knowledge]

2. Find inverse Laplace transform of $\frac{s+3}{s^2+4s+13}$.

(C.O.NO.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries ten marks.

(20x10M=20M)

- 3. Express the function $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 4t, & 2 \le t < 4 \\ 8, & t \ge 4 \end{cases}$ hence find L[f(t)]. (C.O.NO.3) [Comprehension]
- 4. Using convolution theorem, find $L^{-1}\left[\frac{1}{(s^2+1)(s^2+9)}\right]$. (C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carry twelve marks.

(10x12M=12M)

5. Apply Laplace technique to solve y'''(t) + 2y''(t) - y'(t) - 2y(t) = 0 with y(0) = 0, y'(0) = 0 and y''(0) = 6. (C.O.NO.3) [Application]

GAIN MORE KNOWLEDGE

Semester: III semester

Course Code: MAT103

Course Name: Engineering Mathematics -III

Date: 16-11-2019

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Marks allotted] [Ma		type provoking type [Marks allotted] [Marks allotted] oom's Levels Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks			
1	3	Module-3 Laplace Transforms		4								4
2	3	Module-3 Laplace Transforms		4								4
3	3	Module-3 Laplace Transforms					10					10
4	3	Module-3 Laplace Transforms					10					10
5	3	Module-3 Laplace Transforms								12		12
	Total Marks			8			20			12		40

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of quéstions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF ENGINEERING

SOLUTION

Date: 16-11-2019

Time: 1 Hour

Max Marks: 40

Course Code: MAT 103

Course Name: Engineering Mathematics-III

Weightage: 20%

Part A


 $(2Q \times 4 M = 8 Marks)$

Q. No	Solution	Scheme of Marking	Max. Time required for each Question
1	$L[e^{2t} + 4t^3 - 2\sin 3t + 3\cos 3t]$		
1	$= \frac{1}{s-2} + \frac{24}{s^4} - \frac{6}{s^2+9} + \frac{3s}{s^2+9}$	1M+1M+1M+1M	5
	$L^{-1} \left[\frac{s+3}{s^2+4s+13} \right] = L^{-1} \left[\frac{(s+2)+1}{(s+2)^2+9} \right]$	1M	
2	$=e^{-2t}L^{-1}\left[\frac{s+1}{s^2+9}\right]$	1 M	5
	$=e^{-2t}\left[\cos 3t + \frac{1}{3}\sin 3t\right]$	2M	

Part B

 $(2Q \times 10 M = 20 Marks)$

		` `	,
Q. No	Solution	Scheme of Marking	Max. Time required for each Question
	f(t) formula	1 M	
	f(t)= Substitution in the formula	1 M	
	$L[t^2] = \frac{2}{s^3}$	lM	
3	$L[(4t - t^{2})u(t - 2)] = e^{-2s} \left(\frac{4}{s} + \frac{2}{s^{2}} - \frac{2}{s^{3}}\right)$ $L[(8 - 4t)u(t - 4)] = e^{-4s} \left(-\frac{8}{s} - \frac{4}{s^{2}}\right)$	3M	13
	$L[(8-4t)u(t-4)]=e^{-4s}\left(-\frac{8}{5}-\frac{4}{5}\right)$	3M	
	L[f(t)]=Substitution	1 M	
	$f(t) = \sin t$	2M	
4	$g(t) = \frac{1}{3}\sin 3t$	2M	12
	Convolution Formula	1 M	13
	Substitution in the Formula	1 M	

		-			
	L^{-1}	1(c2+1)(c2+0) 0 (3111 t	$-\frac{1}{2}\sin 3t$	4M	
		[(3-+1)(3-+9)] 8	3		

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

Solution	Scheme of Marking	Max. Time required for each Question
, 2, , , ,	3M	
$y(t) = L^{-1} \left[\frac{6}{(s^3 + 2s^2 - s - 2)} \right]$	1 M	
$\frac{6}{(s^3 + 2s^2 - s - 2)} = \frac{2}{s + 2} + \frac{1}{s - 1} + \frac{-3}{s + 1}$	4M	24
$L^{-1}\left[\frac{6}{(s^3 + 2s^2 - s - 2)}\right] = 2e^{-2t} + e^t - 3e^{-t}$	3M	
$y(t) = 2e^{-2t} + e^t - 3e^{-t}$	1 M	
	$(s^{3} + 2s^{2} - s - 2)L[y(t)] = 6$ $y(t) = L^{-1} \left[\frac{6}{(s^{3} + 2s^{2} - s - 2)} \right]$ $\frac{6}{(s^{3} + 2s^{2} - s - 2)} = \frac{2}{s + 2} + \frac{1}{s - 1} + \frac{-3}{s + 1}$ $L^{-1} \left[\frac{6}{(s^{3} + 2s^{2} - s - 2)} \right] = 2e^{-2t} + e^{t} - 3e^{-t}$	$(s^{3} + 2s^{2} - s - 2)L[y(t)] = 6$ $y(t) = L^{-1} \left[\frac{6}{(s^{3} + 2s^{2} - s - 2)} \right]$ $\frac{6}{(s^{3} + 2s^{2} - s - 2)} = \frac{2}{s + 2} + \frac{1}{s - 1} + \frac{-3}{s + 1}$ $L^{-1} \left[\frac{6}{(s^{3} + 2s^{2} - s - 2)} \right] = 2e^{-2t} + e^{t} - 3e^{-t}$ $3M$ $y(t) = 2e^{-2t} + t - 3e^{-t}$ $3M$

Roll No.			
----------	--	--	--

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

SET B

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20

Course Code: MAT 103

Course Name: ENGINEERING MATHEMATICS-III

Program & Sem: B.Tech (All Programs) & III

Date: 20 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 80

Weightage: 40%

Instructions:

Read the questions properly and answer accordingly. (i)

Scientific and non-programmable calculators are permitted (ii)

(iii) Question paper consists of 3 parts.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 05 marks.

(4Qx5M=20M)

1. a.	The value of	b_n in the	Fourier series of	f an even t	function is	
-------	--------------	--------------	-------------------	-------------	-------------	--

[1M](C.O.No.1)[Knowledge]

b. The Laplace transform of $\log 2 + \cos 5t$ is ______. [2M](C.O.No.3)[Knowledge]

c. The inverse Laplace transform of $\frac{s}{s^2-25} + \frac{2}{s}$ is ____. [2M](C.O.No.3)[Knowledge]

2. a. The value of a_0 for the function $f(x) = x^2$ in Half range Cosine series in (0,2) is _____.

[1M](C.O.No.1)[Knowledge]

b. The Z- transform of $k^n + 9n^3$ is _____.

[2M](C.O.No.4)[Knowledge]

c. The inverse Z-transform of $\frac{6z}{(z-1)^2}$ is _____.

[2M](C.O.No.4)[Knowledge]

3. Expand $f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & elsewhere \end{cases}$ as the Fourier Cosine transform.

[5M](C.O.No.2)[Knowledge]

4. Let the random variable X represent the number of defective parts for a machine. When 3 parts are sampled from a production line and tested. The following is the probability distribution of X. Calculate Variance. [5M](C.O.No.5)[Knowledge]

X	0	1	2	3
F(x)	0.51	0.38	0.10	0.01

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

5. Find the Complex Fourier transform of the function $f(x) = \begin{cases} x & for |x| \le \alpha \\ 0 & for |x| > \alpha \end{cases}$, where α

is +ve constant.

(C.O.No.2)[Comprehension]

6. Express the following function in terms of unit-step function and hence find its

Laplace transform
$$f(t) = \begin{cases} 0 & 0 < t < 1 \\ t - 1 & 1 < t < 2 \\ 1 & t > 2 \end{cases}$$

(C.O.No.3)[Comprehension]

7. In a test on electric bulbs, it was found that the life time of a particular brand was distributed normally with an average life of 2000hours and standard deviation of 60 hours. Find the probability of bulbs that are likely last for (i) more than 2100 hours. (ii) less than 1950 hours. (iii) between 1900 to 2100 hours.

(C.O.No.5)[Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks.

(2Qx15M=30M)

8. Find the Fourier series to represent y(x) upto the second harmonic from the following data:

Χ	0	π/3	2 π/3	π	4 π/3	2π
y(x)	1.0	1.4	1.9	1.7	1.5	1.2

(C.O.No.1)[Application]

9. Use Z- transform method to solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$, given that $u_0 = 0$, $u_1 = 1$.

(C.O.No.4)[Application]

Page 2 | 2

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	[Marks allotted] [M		type provoking type [Marks allotted] [Marks allotted] Bloom's Levels Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks		
						С		Α				
1a	1	Module-1		1								5
b	3	Module-3		2				Manufactura de Caracteria de C				
С	3	Module-3		2								
2 a	1	Module-1		1								5
b	4	Module-4		2			:					
С	4	Module-4		2								
3	2	Module-2		5						A A A A A A A A A A A A A A A A A A A		5
4	5	Module-5		5								5
5	2	Module-2					10					10

6	3	Module-3			10	 ,		10
		, ,						
7	5	Module-5			10			10
8	1	Module-1			-		15	15
9	4	Module-4					15	15
	Total Marks		20	. Re latin d	30		30	80

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Françol u/12/19

Faculty Signature:

Reviewer Commend:

SOLUTION

Semester: III semester

Course Code: MAT 103

Course Name: Engineering Mathematics-III

Date: 20-12-2019

Time: 3 Hour

Max Marks: 80

Weightage: 40%

Part A

(4Q x5 M = 20 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	a) 0	1M	10
	b) $\frac{\log 2}{s} + \frac{s}{s^2 + 25}$	2M	
	c) Cosh5t + 2	2M	
2	a) 8/3	1M	10
	b) $\frac{z}{z-k} + 9\frac{z^3 + 4z^2 + z}{(z-1)^4}$	2M	
	c) $6n - 8\cos\left(\frac{n\pi}{2}\right)$	2M	
3	Fourier Cosine transform	2M	10
naariigajaka di Arandiisaa karandiisaa	$F_c(s) = \frac{2Sin2s}{s} + \frac{Cos2s - 1}{s^2}$		
		3M	
4			10
A CONTRACTOR OF THE CONTRACTOR	Mean=0.61	3M	
The state of the s	Variance=0.4979	2M	

Part B

 $(3Q \times 10 M = 30 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	Formula $F(s) = \frac{2\sin s}{s}$	1M 4M	20

	Inverse formula	1 M 4 M	
	$\frac{\pi}{2} = \int_{0}^{\infty} \frac{\sin s}{s} ds$		
6	Formula $L[0] = 0$	2M 1M	20
	$L[(t-1)u(t-1)] = \frac{e^{-s}}{s^2}$ $L[(1-(t-1))u(t-2)] = e^{-2s} \left(-\frac{1}{s^2} - \frac{2}{s}\right)$	3M	
	$L[(1-(t-1))u(t-2)] = e^{-2s} \left(-\frac{1}{s^2} - \frac{2}{s}\right)$	3M	
	L[f(t)] = Subtitution	1 M	
7	$z = \frac{x - \mu}{\sigma}$	1 M	20
	P(z > 1.66) = 0.0485	3M 3M	
	P(z < -1) = 0.1587 P(-2 < z < 1.66) = 0.9287	3M	

Part C

 $(2Q \times 15M = 30 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
	Formula	2M	
8	Table	5M	1
	Values of summation	2M	40
	$a_0 = 2.9, a_1 = -0.37, a_2 = -0.1, b_1$ = 0.17,	5M	
	$b_2 = -0.06$	1M	
	Y=1.45+(-0.37 $\cos x$ +0.17 $\sin x$)- (0.1 $\cos 2x$ +0.06 $\sin 2x$)		
L	2x+0.06 Siii2x)		

	4M	40
7	2M	
$u(z) = \frac{z}{(z+1)(z+3)(z-3)} + \frac{z}{(z+1)(z+3)}$	3M	
$u(z) = \frac{3}{8} \frac{z}{z+1} + \frac{1}{24} \frac{z}{z-3} - \frac{5}{12} \frac{z}{z+3}$	2M	
$u_n = \frac{3}{8}(-1)^n + \frac{1}{24}(3)^n - \frac{5}{12}(-3)^n$	4M	

,		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

SET A

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20

Course Code: MAT 103

Course Name: ENGINEERING MATHEMATICS-III

Program & Sem: B.Tech (All Programs) & III

Date: 20 December 2019

Time: 1:00 PM to 4:00 PM

Max Marks: 80 Weightage: 40%

Instructions:

(i) Read the questions properly and answer accordingly.

(ii) Scientific and non-programmable calculators are permitted

(iii) Question paper consists of 3 parts.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 05 marks.

(4Qx5M=20M)

1. a) The Laplace transform of u (t-a) is.....

[2M](C.O.No.3)[Knowledge]

b)
$$L^{-1}\left(\frac{1}{s^2+9}\right) = \dots$$

[2M](C.O.No.3)[Knowledge]

c) If f(x) is an even function in (-l,l), then the value of $b_n = \dots$

[1M](C.O.No.1)[Knowledge]

2. a) The Z-transform of n^3 is

[2M](C.O.No.4)[Knowledge]

b)
$$Z_T^{-1} \left(\frac{z^2}{z^2 + 1} \right) = \dots$$

[2M](C.O.No.4)[Knowledge]

c) is called as first harmonic.

[1M](C.O.No.1)[Knowledge]

3. Find the Fourier sine transform of $f(x) = \begin{cases} x, 0 < x < 2 \\ 0, elsewhere \end{cases}$

[5M](C.O.No.2)[Knowledge]

4. A shipment of 15 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the expected value of the number of defectives.

[5M](C.O.No.5)[Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

5. Find the Fourier transform of
$$f(x) = \begin{cases} 1 & for |x| \le 1 \\ 0 & for |x| > 1 \end{cases}$$
. Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

(C.O.No.2)[Comprehension]

6. Express the function
$$f(t) = \begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \end{cases}$$
 in terms of unit step function and hence $t^2, & t > 2$

find L[f(t)].

(C.O.No.3)[Comprehension]

7. An electric firm manufactures light bulbs that have a life before burn-out that is normally distributed with mean equal to 800 hours and a standard deviation of 40hours. Find the probability that a bulb burns (i) more than 834 hours (ii) less than 790 (iii) between 778 and 834 hours.
(C.O.No.5)[Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks.

(2Qx15M=30M)

8. Obtain the Fourier series of y up to the second harmonics for the following values.

x^0	45	90	135	180	225	270	315	360
У	4.0	3.8	2.4	2.0	-1.5	0	2.8	3.4

(C.O.No.1)[Application]

9. Find the response of the system $y_{n+2} - 5y_{n+1} + 6y_n = 1$ with $y_0 = 0, y_1 = 1$ by Z-Transform method.

(C.O.No.4)[Application]

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type irks al	recall lotted] Levels	prov [Mar	ks all	g type lotted]	olem S type irks allo	_	Total Marks
1a	3	Module-3		2							5
b	3	Module-3		2							
С	1	Module-1		1		***************************************					
2 a	4	Module-4		2							5
b	4	Module-4	-	2							
С	1	Module-1		1			٠,				
3	2	Module-2		5							5
4	5	Module-5		5						-	5
5	2	Module-2					10				10
6	3	Module-3					10				10

7	5	Module-5		10		10
8	1	Module-1			15	15
9	4	Module-4			15	15
	Total Marks		20	30	30	80

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature: M. 1 12/19

Reviewer Commend:

SCHOOL OF ENGINEERING

	$\frac{\pi}{2} = \int_{0}^{\infty} \frac{\sin s}{s} ds$		
6	Formula $L[1] = \frac{1}{s}$ $L[(t-1)u(t-1)] = \frac{e^{-s}}{s^2}$	2M 1M 3M	20
	$L[(t-1)u(t-1)] = \frac{e^{-s}}{s^2}$ $L[(t^2 - t)u(t-2)] = e^{-2s} \left(\frac{2}{s^3} + \frac{3}{s^2} + \frac{2}{s}\right)$ $L[f(t)] = Subtitution$	3M 1M	
7	$z = \frac{x - \mu}{\sigma}$ $P(z > 1.67) = 0.04746$ $P(z < -0.83) = 0.20327$ $P(-1.67 < z < 1.66) = 0.90408$	1M 3M 3M 3M	20

Part C

 $(2Q \times 15M = 30 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
	Formula	2M	40
8	Table	5M	
	$\sum y = 16.9; \sum y \cos x = 5.5718; \sum y \cos 2x = 1.6;$ $\sum y \sin x = 7.40621; \sum y \sin 2x = -2.7;$	2M	
	$a_0 = 4.225, a_1 = 1.393, a_2 = 0.4, b_1 = 1.8516,$ $b_2 = -0.6275$ $Y=2.1125+1.393 \cos x+1.8516 \sin x+0.4\cos 2x-0.675$	5M	
	sin2x	1M	

SOLUTION

Semester: III semeter

Course Code: MAT 103

Course Name: Engineering Mathematics-III

Date: 20-12-2019

Time: 3 Hour

Max Marks: 80

Weightage: 40%

Part A

(4Q x5 M = 20 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	a) $\frac{e^{-as}}{s}$ $\sin 3t$	2M	10
	b) $\frac{\sin 3t}{3}$	2M	
	c) 0	1M	
2	a) $\frac{z^3 + 4z^2 + z}{(z-1)^4}$	2M	10
	b) $\cos\left(\frac{n\pi}{2}\right)$	2M	
	c) $a_1 \cos x + b_1 \sin x$	1M	
3	Fourier sine transform $\frac{-2\cos 2s}{s} + \frac{\sin 2s}{s^2}$	2M	10
		3M	
4	X 0 1 2 f(x) 22/35 12/35 1/35	3M	10
	Mean=2/5	2M	

Part B

 $(3Q \times 10 M = 30 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	Formula	1M	20
	$F(s) = \frac{2\sin s}{s}$	4M	
	Inverse formula	1M 4M	

$y(z)[(z-2)(z-3)]-z=-\frac{1}{2}$	$\frac{z}{-1}$ 4M	40
$\bar{y}(z) = \frac{z}{(z-1)(z-2)(z-3)}$	$+\frac{z}{(z-2)(z-3)}$	
$\frac{1}{(z-1)(z-2)(z-3)} = \frac{1}{2(z-1)(z-2)(z-3)}$	$\frac{1}{z-1} - \frac{1}{(z-2)} + \frac{1}{2(z-3)}$ 3M	
$\frac{1}{(z-2)(z-3)} = -\frac{1}{(z-2)}$	1 2M	
$Y(z) = \frac{1}{2} - 2(2^n) + \frac{3}{2}(3^n)$	4M	

